Photonic Quantum Computing

COFFEE_KLATCH · Invited

Abstract

Quantum physics has revolutionized our understanding of information processing and enables computational speed-ups that are unattainable using classical computers. In this talk I will present a series of experiments in the field of photonic quantum computing. The first experiment is in the field of photonic state engineering and realizes the generation of heralded polarization-entangled photon pairs. It overcomes the limited applicability of photon-based schemes for quantum information processing tasks, which arises from the probabilistic nature of photon generation. The second experiment uses polarization-entangled photonic qubits to implement ``blind quantum computing,'' a new concept in quantum computing. Blind quantum computing enables a nearly-classical client to access the resources of a more computationally-powerful quantum server without divulging the content of the requested computation. Finally, the concept of blind quantum computing is applied to the field of verification. A new method is developed and experimentally demonstrated, which verifies the entangling capabilities of a quantum computer based on a blind Bell test.

Authors

  • Stefanie Barz

    Vienna Center for Quantum Science and Technology, Faculty of Physics, University of Vienna