Multi-scale architecture for fast optical addressing and control of large scale qubit arrays

POSTER

Abstract

The use of spatial light modulators(SLM) for site-selective quantum state control has been limited due to slow transition times preventing rapid, consecutive quantum gates. We present a hybrid architecture consisting of a fast deflector and a spatial light modulator which allows rapid site-selective control of the quantum state of qubits in a large 2D lattice. We split the spatial light modulator into multiple segments and switch between them using a fast deflector. With this proposed setup, the average time increment between scanner transitions is substantially reduced, increasing the number of gates that can be performed within a single spatial light modulator full frame setting. We analyze the performance of this device in two different configurations: in configuration 1, each segment of the spatial light modulator addresses the full qubit lattice; in configuration 2, each segment of the spatial light modulator addresses a sub-array, and an additional fast deflector positions the sub-array with respect to the full qubit lattice. With these hybrid scanners, we calculate qubit addressing rates that are tens to hundreds of times faster than using a spatial light modulator alone. Furthermore, we show that these scanners can also be implemented with a simple hologram generation method without requiring iterative algorithms.

Publication: 1. M. Saffman, "Quantum computing with atomic qubits and Rydberg interactions: Progress and challenges," J. Phys. B
49, 202001 (2016).
2. D. Kim, A. Keesling, A. Omran, H. Levine, H. Bernien, M. Greiner, M. D. Lukin, and D. R. Englund, "Large-scale
uniform optical focus array generation with a phase spatial light modulator," Opt. Lett. 44, 3178–3181 (2019).
3. P. Huft, Y. Song, T. M. Graham, K. Jooya, S. Deshpande, C. Fang, M. Kats, and M. Saffman, "Simple, passive design
for large optical trap arrays for single atoms," Phys. Rev. A 105, 063111 (2022).
4. K.-N. Schymik, B. Ximenez, E. Bloch, D. Dreon, A. Signoles, F. Nogrette, D. Barredo, A. Browaeys, and T. Lahaye,
"In situ equalization of single-atom loading in large-scale optical tweezer arrays," Phys. Rev. A 106, 022611 (2022).
5. T. M. Graham, Y. Song, J. Scott, C. Poole, L. Phuttitarn, K. Jooya, P. Eichler, X. Jiang, A. Marra, B. Grinkemeyer,
M. Kwon, M. Ebert, J. Cherek, M. T. Lichtman, M. Gillette, J. Gilbert, D. Bowman, T. Ballance, C. Campbell, E. D.
Dahl, O. Crawford, N. S. Blunt, B. Rogers, T. Noel, and M. Saffman, "Multi-qubit entanglement and algorithms on a
neutral-atom quantum computer," Nature 604, 457–462 (2022).
6. P. Bechtold, R. Hohenstein, and M. Schmidt, "Evaluation of disparate laser beam deflection technologies by means
of number and rate of resolvable spots," Opt. Lett. 38, 2934 (2013).
7. G. R. B. E. Römer and P. Bechtold, "Electro-optic and acousto-optic laser beam scanners," Phys. Procedia 56, 29
(2014).
8. S. Ebadi, T. T. Wang, H. Levine, A. Keesling, G. Semeghini, A. Omran, D. Bluvstein, R. Samajdar, H. Pichler,
W. W. Ho, S. Choi, S. Sachdev, M. Greiner, V. Vuletic, and M. D. Lukin, "Quantum phases of matter on a 256-atom
programmable quantum simulator," Nature 595, 227–232 (2021).
9. C.-Y. Shih, S. Motlakunta, N. Kotibhaskar, M. Sajjan, R. Hablützel, and R. Islam, "Reprogrammable and high-precision
holographic optical addressing of trapped ions for scalable quantum control," npj Qu. Inf. 7, 57 (2021).
10. S. Turataev, I. T. Leite, K. J. MIitchell, M. J. Padgett, D. B. Phillips, and T. Cižmár, "Comparison of nematic
liquid-crystal and DMD based spatial light modulation in complex photonics," Opt. Expr. 25, 29874 (2017).
11. F. Schmidt-Kaler, H. Häffner, S. Gulde, M. Riebe, G. P. T. Lancaster, T. Deuschle, C. Becher, W. Hänsel, J. Eschner,
C. F. Roos, and R. Blatt, "How to realize a universal quantum gate with trapped ions," Appl. Phys. B 77, 789 (2003).
12. T. Graham, M. Kwon, B. Grinkemeyer, A. Marra, X. Jiang, M. Lichtman, Y. Sun, M. Ebert, and M. Saffman,
"Rydberg mediated entanglement in a two-dimensional neutral atom qubit array," Phys. Rev. Lett. 123, 230501 (2019).
13. K. Gillen-Christandl, G. Gillen, M. J. Piotrowicz, and M. Saffman, "Comparison of Gaussian and super Gaussian
laser beams for addressing atomic qubits," Appl. Phys. B 122, 131 (2016).
14. G. Lazarev, A. Hermerschmidt, S. Krüger, and S. Osten, "LCOS spatial light modulators : Trends and applications,"
Opt. Imaging Metrol. Adv. Technol. (2012).
15. D. D. Yavuz, P. B. Kulatunga, E. Urban, T. A. Johnson, N. Proite, T. Henage, T. G. Walker, and M. Saffman, "Fast
ground state manipulation of neutral atoms in microscopic optical traps," Phys. Rev. Lett. 96, 063001 (2006).
16. Y. Song, H.-g. Lee, H. Kim, H. Jo, and J. Ahn, "Subpicosecond ?? rotations of atomic clock states," Phys. Rev. A 97,
052322 (2018).
17. K. Gillen-Christandl and G. D. Gillen, "Projection of diffraction patterns for use in cold-neutral-atom trapping," Phys.
Rev. A 82, 063420 (2010).
18. M. Pasienski and B. DeMarco, "A high-accuracy algorithm for designing arbitrary holographic atom traps," Opt.
Express 16 (2008).
19. R. W. Gerchberg and W. O. Saxton, "A practical algorithm for the determination of phase from image and diffraction
plane pictures," Optik 35 (1972).

Presenters

  • Eunji Oh

    University of Wisconsin - Madison

Authors

  • Eunji Oh

    University of Wisconsin - Madison

  • Trent Graham

    University of Wisconsin - Madison

  • Mark Saffman

    University of Wisconsin-Madison; Infleqtion, Inc.,, University of Wisconsin - Madison, University of Wisconsin - Madison, Infleqtion, Inc., Madison, Wisconsin, 53703