Diffracted Evanescent Wave Model for Enhanced, Suppressed and Directional Transmission through Subwavelength Apertures
COFFEE_KLATCH · Invited
Abstract
The transmission spectrum of an array of subwavelength apertures in a metal film displays a set of peaks related to the periodicity. Extraordinary transmission efficiencies at these positions have been claimed and associated with discrete grating-coupling conditions that excite surface-plasmon polaritons (SPPs). In this talk, we re-evaluate the magnitude and origin of the effect by proper normalization of the as-collected transmission spectrum of the array to that of the corresponding isolated hole. The normalized spectrum then reveals a sequence of both enhancements and suppressions of modest and similar magnitude (less than a factor of ten). This continuous modulation is inconsistent with an SPP-based interpretation, but rather suggests an underlying mechanism based on interference. A subwavelength aperture couples inefficiently to a specific surface mode such as an SPP because it diffracts light into a continuum of evanescent surface waves with a large distribution of in-plane k-vectors. We show however that these components sum to form an effective surface wave which is coherent over a short range and phase-shifted with respect to the source. We confirm the presence of this composite diffracted evanescent wave (CDEW) via interferometric experiments involving pairs of subwavelength apertures. We propose a new model for the anomalous transmission of hole arrays in which enhancement and suppression result from the interference of light directly incident upon (or emerging from) a given hole with CDEWs launched by neighboring holes. This model successfully predicts equivalent effects in non-metallic systems. In addition, it accounts for the salient optical properties of single apertures surrounded by surface corrugations, such as efficient, low-divergence beaming.
–
Authors
-
Henri Lezec
CNRS, France, and California Institute of Technology, Pasasdena, CA