Precise adaptation in chemotaxis through ``assistance neighborhoods"

ORAL

Abstract

The chemotaxis network in Escherichia coli is remarkable for its sensitivity to small relative changes in the concentrations of multiple chemical signals over a broad range of ambient concentrations. Key to this sensitivity is an adaptation system that relies on methylation and demethylation/deamidation of specific modification sites of the chemoreceptors by the enzymes CheR and CheB, respectively. These enzymes can access 5-7 receptors once tethered to a particular receptor. Based on these ``assistance neighborhoods'', we present a model for precise adaptation of mixed clusters of two-state chemoreceptors. In agreement with experiment the response of adapted cells to addition/removal of attractant scales with the free-energy change at fixed ligand affinity. Our model further predicts two possible limits of precise adaptation: either the response to further addition of attractant stops through saturation of the receptors, or receptors fully methylate before they saturate and therefore stop adapting.

Authors

  • Robert Endres

  • Ned Wingreen

    Princeton University