Controlling Spin-Density Wave Periodicity in Thin Cr$_{1-x }$V$_{x}$ Films
ORAL
Abstract
Chromium is an itinerant antiferromagnet with a spin-density wave (SDW) ground state driven by a nesting of Fermi surface sheets around the Gamma and H points of the Brillouin zone. Periodicity of the SDW plays an important role in mediating magnetic interactions in magnetic multilayer structures providing a giant magnetoresistance effect and potentially interesting for application in spintronic devices. Therefore control of SDW in thin chromium films is of the high importance. It requires a detailed understanding of phenomena related to stabilization of SDW. We used angle-resolved photoemission to characterize spin-density wave and Fermi surface topology in thin Cr$_{1-x }$V$_{x }$films as a function of the film thickness, temperature, composition and hydrogen surface coverage. A key feature of our results is the ability to control the magnetic structure of thin films of Cr with an external perturbation: balancing the surface energetic interactions favored commensurate state of SDW vs. the energy associated with Fermi surface topology stabilizing SDW incommensurate phase in the bulk.
–
Authors
-
Oleg Krupin
University of Oregon
-
Eli Rotenberg
Lawrence Berkeley National Laboratory, Advanced Light Source
-
S. D. Kevan
University of Oregon