Does mean mean MEAN!? Digits For A Very Long Time Giving Us The Finger!: 1881 Statistics Log-Law was: Quanta=Digits!: BEC; Zipf 1/f-Law; Information-Thy; Random-{\#}s = Euler V Bernoulli; Q-Computing = Arithmetic; P=/=NP SANS Complexity: Euclid 3-Mille
POSTER
Abstract
Classic statistics digits Newcomb[Am.J.Math.4,39,1881]-Weyl[Goett.Nachr.1912]-Benford[Proc.Am.Phil.Soc.78,4,51,1938]("NeWBe")probability ON-AVERAGE/MEAN log-law: $<$P$>$=log[1+1/d]=log[(d+1)/d][google:``Benford's-Law'';"FUZZYICS": Siegel[AMS Nat.-Mtg.:2002{\&}2008)]; Raimi[Sci.Am.221,109,1969]; Hill[Proc.AMS,123,3,887,1996]=log-base=units=SCALE-INVARIANCE!. Algebraic-inverse d=1/[e\^{}(w)-1]: BOSONS(1924)=DIGITS($<$1881): Energy-levels:ground=(d=0),first-(d=1)-excited ,... No fractions; only digit-integer-differences=quanta! Quo vadis digit $<$P(d=0)$>$=oo vs. $<$P(d=1)$> \quad <<<$oo)?: DIGITS gapFUL BE(``NeWBe'')C! Siegel[Schroed.Cent.Symp.1987] e\^{}(w)-term expansion: d$\sim $1/[[1+w+...]-1]=1/w\^{}(1.000...)Zipf-law Pareto power-law decay algebraicity, Siegel[Symp.Fractals,MRS Fall-Mtg.,1989-5!] ``FUZZYICS'' explains INEVITABILITY via Lawvere-Goguen-Siegel-Baez ``CATEGORICAL-SEMANTICS'' HYBRID:CATEGORY-THEORY+COGNITIVE-SEMANTICS! Averages dominate physics: expectations,ensemble, time,ANY/ALL experiments!: What if any don't follow digits log-law? Must they always?; Do YOURS?; ALWAYS?; No fluctuations from it allowed?; Never?; Ever?; Never Ever? Ponder long/hard digits' log-law's MEANING for physics/ sciences! Could statistics' ``mean'' REALLY MEANS ``MEAN!''? "Does `mean' mean ``MEAN''!?": ``quantum-computing'' is/was always alive/well in/since 1881: in $<$1 + 1 = 2$>$,... simple-arithmetic!
Authors
-
Edward Siegel