Quantum phases of a two-dimensional dipolar Fermi gas
ORAL
Abstract
We examine the superfluid and collapse instabilities of a quasi two-dimensional gas of dipolar fermions aligned by an orientable external field. It is shown that the interplay between the anisotropy of the dipole-dipole interaction, the geometry of the system, and the $p$-wave symmetry of the superfluid order parameter means that the effective interaction for pairing can be made very large without the system collapsing. This leads to a broad region in the phase diagram where the system forms a stable superfluid. Analyzing the superfluid transition at finite temperatures, we calculate the Berezinskii--Kosterlitz--Thouless temperature as a function of the dipole angle.
–
Authors
-
Georg Bruun
Niels Bohr Institute
-
Edward Taylor
Universita di Trento, University of Trento