Synthesis of Polystyrene-Silica Composite Particles via One-Step Nanoparticle-Stabilized Emulsion Polymerization
ORAL
Abstract
Polystyrene-silica core-shell composite particles are prepared by one-step emulsion polymerization with a nonionic initiator VA-086, solely stabilized by silica nanoparticles. The silica nanoparticles are successfully incorporated into as the shell, likely due to the fact that the nanoparticles are thermodynamically favorable to self-assemble and remain at the liquid-liquid interfaces during the emulsion polymerization. The silica content, determined by thermogravimetric analysis, is approximately 20 wt% in the composite particles. In addition, we further explore the polymerization mechanism by studying the particle growth as a function of initiator concentration and reaction time: when the silica/monomer ratio is increased from 0.83 wt% to 2.5 wt%, the particle size at 24 hour reaction time decreases for a fixed monomer amount, probably due to a larger number of nuclei at the initial stage of polymerization. Further increasing the initiator/monomer ratio to 4.2 wt% does not continually decrease the particle size, which may be limited by the stabilization provided by a fixed concentration of silica nanoparticles. The surface coverage also changes with initiator concentration and reaction time although the underlying mechanism is not fully understood.
–
Authors
-
Lenore Dai
Department of Chemical Engineering, Arizona State University
-
Huan Ma
Department of Chemical Engineering, Arizona State University