Mass, Energy, Space And Time Systemic Theory--MEST-- heat and cold, positive electron and negative electron
ORAL
Abstract
Things have their physical system of the mass,energy, space and time of themselves-MEST. The time is from the frequency of wave, the spac is from the amplitude of wave. Also they have different space-time and MEST of themselves, but all of them have the balance system of MEST In the solar system, there is the ``quantization'' model of the planets, $ V^2\approx \frac{1}{n^2}0.92\times 10^4km^2/s^2,{\begin{array}{*{20}c} \hfill \\ \end{array} }r\approx n^2\times 14.5\times 10^6km,{\begin{array}{*{20}c} \hfill \\ \end{array} }2\pi t\approx n^2\times 1.89\times 10^6s,(n=2,{\begin{array}{*{20}c} \hfill \\ \end{array} }3,{\begin{array}{*{20}c} \hfill \\ \end{array} }4...)$ And there is the balance energy equation of planet (with a Round revolution orbit), $ \frac{1}{2}mv^2+m'c^2=-G\frac{Mm}{r},{\begin{array}{*{20}c} \hfill \\ \end{array} }\frac{1}{2}mv^2=\frac{1}{2n^2}mv_0 ^2,{\begin{array}{*{20}c} \hfill \\ \end{array} }m'c^2=\frac{1}{n^2}m_0 'c^2,{\begin{array}{*{20}c} \hfill \\ \end{array} }G\frac{Mm}{r}=\frac{1}{n^2}G\frac{Mm}{r_0 }.$ Among it, ``$m'c^2$'' is the energy of space-time of planet, ``$\frac{1}{2}mv^2$'' is the kinetic energy of planet, ``$G\frac{mM}{r}$'' is potential energy of planet. In atomic system, there is the ``quantization'' model of the electron, $ v_e ^2\approx \frac{1}{n^2}v_0 ^2,{\begin{array}{*{20}c} \hfill \\ \end{array} }r_e \approx n^2r_{e0} ,{\begin{array}{*{20}c} \hfill \\ \end{array} }2\pi t_e \approx n^22\pi t_{e0} (n=2,{\begin{array}{*{20}c} \hfill \\ \end{array} }3,{\begin{array}{*{20}c} \hfill \\ \end{array} }4...)$ And there is the balance energy equation of the electron of Hydrogen (with a Round revolution orbit), $ \frac{1}{2}m_e v_e ^2+m_e 'c^2=-\frac{1}{4\pi \varepsilon _0 }\frac{q_1 q_2 }{r_e },{\begin{array}{*{20}c} \hfill \\ \end{array} }\frac{1}{2}m_e v_e ^2=\frac{1}{2n^2}m_{e0} v_{e0} ^2,{\begin{array}{*{20}c} \hfill \\ \end{array} }m_e 'c^2=\frac{1}{n^2}m_{e0} 'c^2,{\begin{array}{*{20}c} \hfill \\ \end{array} }\frac{1}{4\pi \varepsilon _0 }\frac{q_1 q_2 }{r_e }=\frac{1}{n^2}\frac{1}{4\pi \varepsilon _0 }\frac{q_1 q_2 }{r_{e0} }.$ Among it, ``$m_e 'c^2$'' is the energy of space-time of the electron, ``$\frac{1}{2}m_e v_e ^2$'' is the kinetic energy of the electron, ``$\frac{1}{4\pi \varepsilon _0 }\frac{q_1 q_2 }{r_e }$'' is electric potential energy.
Authors
-
Dayong Cao
Beijing Natural Providence Science \& Technology Development Co., Ltd