P =/=NP Category-Semantics(C-S) TRIVIAL Proof: EUCLID!!! [(So Miscalled) Computational-Complexity(CC) Jargonial-Obfuscation(J-O); (Which???) MillenniumED-ProblemED(M-P): NO CC, CS; Feet of Clay!!!]

POSTER

Abstract

P=/=NP M-P proof is by C-S J-O elimination! C-S P=(?)=NP MEANS (Deterministic).(P-C)=(?)=(NON-Deterministic).(P-C)=(NP). C-S P=(?)=NP MEANS (Deterministic).(P-C)=(?)=(Non-Deterministic).(P-C) i.e. D.(P)=(?)= N.(P). For inclusion(equality) vs. EXclusion(INequality), IRrelevant(P) simply cancels! (Equally any other CC IF both sides identical). Crucial question left (D)=(?)=(N-D), i.e. D =(?)= N. Algorithmics: Deterministic (D) serial vs. NON-deterministic (N) NON-serial, branch fork forms a triangle, its vertices a plane. Menger Dimension-Theory: Dimensionality: D serial is one-dimensional, dim(D) = 1 (definition), VS. dim(N= NON-serial) =/= one-dimensional; dim(N) = [2(branching; fork; triangle; plane)+ E(probabilistic)] $>$ 2 [Sipser [Intro. Thy. Comp.(1997)-p. 49; Fig. 1.15!!!]]. Hence (Euclid[$\sim $ -350 BCE]) simple formative geometry, dim(D) = 1 =/= dim(N) = [2(branching)+ E(probabilistic)] $>$ 2, Left-to-Right INclusion VS. Right-to-Left EXclusion. Hence P =/= NP!!! QED, i.e. D =/= N, i.e. dim(D) = 1 =/= dim(N) $>$ 2 by first millennium BCE, before CS J-O of CC!!! Harder doable C-S J-O analysis proofs: any combinations of DIS-similar CCs: LHS and D with low CC and/or RHS and N-D=N with high CC!

Authors

  • Edward Carl-Ludwig Siegel

    FUZZYICS=CATEGORYICS (SON OF TRIZ)/La Jolla/Las Vegas