Algorithmic-Reducibility = Renormalization-Group Fixed-Points; "Noise"-Induced Phase-Transitions (NITs) to Accelerate Algorithmics ("NIT-Picking") Replacing CRUTCHES!!!: Gauss Modular/Clock-Arithmetic Congruences = Signal X Noise PRODUCTS. .

POSTER

Abstract

Cook-Levin computational-"complexity"(C-C) algorithmic-equivalence reduction-theorem reducibility equivalence to renormalization-(semi)-group phase-transitions critical-phenomena statistical-physics universality-classes fixed-points, is exploited with Gauss modular/clock-arithmetic/model congruences = signal X noise PRODUCT reinterpretation. Siegel-Baez FUZZYICS=CATEGORYICS(SON of ``TRIZ''): Category-Semantics(C-S) tabular list-format truth-table matrix analytics predicts and implements "noise"-induced phase-transitions (NITs) to accelerate versus to decelerate Harel [Algorithmics(1987)]-Sipser[Intro. Theory Computation(1997) algorithmic C-C: "NIT-picking" to optimize optimization-problems optimally(OOPO). Versus iso-"noise" power-spectrum quantitative-only amplitude/magnitude-only variation stochastic-resonance, this "NIT-picking" is "noise" power-spectrum QUALitative-type variation via quantitative critical-exponents variation. Computer-"science" algorithmic C-C models: Turing-machine, finite-state-models/automata, are identified as early-days once-workable but NOW ONLY LIMITING CRUTCHES IMPEDING latter-days new-insights!!!

Authors

  • F. Young

    FUZZYICS=CATEGORYICS(SON OF TRIZ)/CATEGORY-SEMANTICS, FUZZYICS=CATEGORYICS(SON OF TRIZ), FUZZYICS=CATEGORYICS(SON OF TRIZ)/La Jolla/Las Vegas

  • F. Young

    FUZZYICS=CATEGORYICS(SON OF TRIZ)/CATEGORY-SEMANTICS, FUZZYICS=CATEGORYICS(SON OF TRIZ), FUZZYICS=CATEGORYICS(SON OF TRIZ)/La Jolla/Las Vegas