Mean field approach to fluctuations of surface line defects

ORAL

Abstract

Below the roughening transition temperature, the dynamics of crystal surfaces are driven by the motion of line defects (steps) of atomic size. According to the celebrated Burton Cabrera-Frank (BCF) model, the steps move by mass conservation, as adsorbed atoms (adatoms) diffuse on terraces and attach/detach at step edges. The resulting deterministic equations of motion incorporate nonlinear couplings due to entropic and elastic-dipole step-step interactions. In this talk, I will discuss a formal theory for stochastic aspects of step motion by adding noise to the BCF model in 1+1 dimensions. I will define systematically a ``mean field'' that enables the conversion of the coupled, nonlinear stochastic equations for the distance between neighboring steps (terrace widths) to a single Langevin-type equation for an effective terrace width. In the course of my study, I invoke the Bogoliubov-Born-Green Kirkwood-Yvon (BBGKY) hierarchy for joint terrace-width probability densities and a decorrelation ansatz for terrace widths. By using an example drawn from epitaxial growth (with material deposition from above), I will compare the mean field approach to an exact result from a linearized growth model. [D. Margetis, J. Phys A: Math. Theor. 43, 065003 (2010).]

Authors

  • Dionisios Margetis

    Department of Mathematics, University of Maryland, Math Dept., U. of Maryland, College Park