Polymer Transport Near Rough Surfaces

ORAL

Abstract

The rheology of dilute polymer solutions under confinement is important in biology, medicine, microfluidic device design, synthetic polymer processing, and even geologic porous media. However, the solution's specific interactions with the confining surface are poorly understood. This situation is exacerbated for composite nanoparticles, such as polymer/metallic hybrids. Using multi-particle collision dynamics, we find a rich array of transport regimes depending on small-scale surface roughness and the specific surface/solute interactions. These factors couple to hydrodynamic conditions, including flow strength and confinement geometry in unexpected ways. Our findings may be relevant to transport phenomena in certain rough-walled capillaries, such as the distribution of various nanoconjugates in vivo.

Authors

  • Moses Bloom

    Northwestern University

  • Jonathan Whitmer

    University of Illinois

  • Erik Luijten

    Northwestern University, Department of Materials Science and Engineering and Department of Engineering Sciences and Applied Mathematics, Northwestern University