Dynamics of self-oscillating cilia designed from active polymer gels
ORAL
Abstract
Using theory and simulations, we design active synthetic surfaces which are capable of replicating functionalities of biological cilia. In order to design such exquisite biomimetic systems we harness unique properties of polymer gels that undergo photosensitive Belousov-Zhabotinsky (BZ) reaction. Powered by internalized BZ reaction these polymer gels swell and de-swell autonomously by chemo-mechanical transduction and therefore are ideal materials for designing our system. In order to simulate the dynamics of the BZ cilia in surrounding fluid we have developed a nonlinear hybrid 3D model which captures elasto-dynamics of polymer gel and diffusive exchange of BZ reagents between the gel and the fluid. Here we show that the geometrical arrangement of cilia and the distribution of BZ activator in the fluid determine the dynamic response of the cilia. We further show that using light as an external stimulus we can sequentially modulate height of individual cilium and thereby create the ``piano effect''. Finally, we demonstrate that synchronized oscillations in the cilia result from the distribution of BZ-activator in the surrounding fluid. Our findings can be used to design active surfaces which can be remotely tuned depending upon the magnitude of external stimuli.
–
Authors
-
Pratyush Dayal
University of Pittsburgh
-
Amitabh Bhattacharya
University of Pittsburgh
-
Olga Kuksenok
University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15261, USA, Chemical Engineering Dept, University of Pittsburgh
-
Anna C. Balazs
Department of Chemical Engineering, University of Pittsburgh, University of Pittsburgh, Chemical Engineering Department, University of Pittsburgh, Chemical Engineering Department, University of Pittsburgh, Pittsburgh, PA 15261, University of Pittsburgh, Pittsburgh, PA 15261, USA, Chemical Engineering Dept, University of Pittsburgh