Phase separation in doped Mott insulators

ORAL

Abstract

Motivated by the commonplace observation of Mott insulators away from integer filling, we construct a simple thermodynamic argument for phase separation in first-order doping-driven Mott transitions. The theory predicts the transition is percolative and should exhibit Coulomb frustration. As an application, we consider the titanate family of perovskites, an ideal test case since both the doping and correlation strength can be tuned. We compute the critical dopings required to drive the Mott transition using first-principles methods combined with dynamical mean-field theory, finding good agreement with experiment.

Authors

  • Chuck-Hou Yee

    Kavli Institute for Theoretical Physics, UCSB

  • Leon Balents

    KITP, UCSB, Kavli Institute for Theoretical Physics, University of California, Santa Barbara, Kavli Institute for Theoretical Physics, Santa Barbara, Kavli Institute for Theoretical Physics, UCSB