Synchronization in Networks of Coupled Chemical Oscillators

ORAL

Abstract

We have studied networks of coupled photosensitive chemical oscillators. Experiments and simulations are carried out on networks with different topologies and modes of coupling. We describe experimental and modeling studies of chimera and phase-cluster states and their relation to other synchronization states. Networks of integrate-and-fire oscillators are also studied in which sustained coordinated activity is exhibited. Individual nodes display incoherent firing events; however, a dominant frequency within the collective signal is exhibited. The introduction of spike-timing-dependent plasticity allows the network to evolve and leads to a stable unimodal link-weight distribution. M. R. Tinsley et al., Nature Physics 8, 662 (2012); S. Nkomo et al., Phys. Rev. Lett. 110, 244102 (2013); H. Ke et al., in preparation.

Authors

  • Kenneth Showalter

    West Virginia University

  • Mark Tinsley

    West Virginia University

  • Simbarashe Nkomo

    West Virginia University

  • Hua Ke

    West Virginia University