Physics and (patho)physiology in confined flows: from colloidal patterns to cytoplasmic rheology and sickle cell anemia

COFFEE_KLATCH · Invited

Abstract

I will discuss a few problems that involve the interaction of fluids and solids in confined spaces. (i) Jamming in pressure-driven suspension flows that show a transition from Stokes flows to Darcy flows as the solids start to lock, as in evaporative patterning in colloids (e.g. coffee stain formation) .(ii) Jamming and clogging of red blood cells, as in sickle-cell pathophysiology, with implications for other diseases that involve jamming. (iii) The mechanical response of crowded networks of filaments bathed in a fluid, as in the cytoskeleton, that can be described by poroelasticity theory. In each case, I will show how simple theories of multiphase flow and deformation can be used to explain a range of experimental observations, while failing to account for others, along with some thoughts on how to improve them.

Authors

  • L. Mahadevan

    Harvard School of Engineering and Applied Science, Harvard University, SEAS, Harvard University, Cambridge, MA, USA, Harvard, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138,USA., SEAS, Department of organismic and evolutionary biology, Harvard university, SEAS, Harvard University, Harvard Univ, School of Engineering and Applied Sciences, Wyss Institute, Harvard University