Controllable Coexistence of Multiple Instabilities on a Single Liquid Filament

ORAL

Abstract

Droplet based microfluidics exploits the decay of a liquid filament or cylinder into droplets of micrometric size. While the physics of droplet breakup on small scales remains a field of vivid interest, droplet based microfluidics has become widely used both in fundamental science and application such as (bio-)analytics or micro-chemistry. We present experimental research on the formation of droplets by breakup of a squeezed liquid filament surrounded by an immiscible phase that flows over a topographic step. This non-equilibrium process arises from the interplay between flow properties and interfacial instabilities when the filament is suddenly released from confinement at the step. In contrast to previous studies, a rich variety of different droplet breakup regimes was observed for the used geometry which are characterized by the coexistence of multiple liquid instabilities on a single filament. Surprisingly, these instabilities can be of different type while the filament is exposed to a symmetric flow-field. This spontaneous symmetry breaking is a nontrivial consequence of volume throughput constraints of each individual instability and allows for the specific production of heterogeneous droplet families from one single filament under constant flow rates. (Submitted 2014)

Authors

  • Michael Hein

    Saarland University

  • Jean-Baptiste Fleury

    Saarland University

  • Ralf Seemann

    Saarland University, Experimental Physics, Saarland University, 66041 Saarbruecken, Germany