Convection-driven aggregation of micron sized capsules

ORAL

Abstract

Collective dynamics of microcapsules often serve as a model for understanding behavior observed in colonies of biological cells. Using computer simulations, we explore the capability of chemically generated convection to assemble microcapsules into a colony with neighbors close enough to facilitate chemical communication. The microcapsules are assumed to carry a supply of chemical fuel. When this fuel, leaking out of the capsules, reacts at enzyme-covered sites of the chamber, the reaction generates fluid density variations driving flows. These flows carry the microcapsules, which tend to aggregate into colonies on and near the enzyme-covered sites. This aggregation continues until the reagent has been depleted and convection stops. We show that capsule colonies of predesigned shapes can be assembled by patterning the enzyme-covered surface.

Authors

  • Oleg Shklyaev

    Department of Chemical Engineering, The University of Pittsburgh

  • Henry Shum

    Department of Chemical Engineering, The University of Pittsburgh

  • Anna Balazs

    Univ of Pittsburgh, Department of Chemical Engineering, University of Pittsburgh, Chemical Engineering Department, University of Pittsburgh, Pennsylvania 15261, USA, Department of Chemical Engineering, The University of Pittsburgh, University of Pittsburgh, Chemical Engineering Department, University of Pittsburgh, Pittsburgh, PA 15261, USA