Simulation and Numerical Modeling of the Self-assembly of an Optoelectronic Peptide
ORAL
Abstract
We report molecular dynamics simulations of the self-assembly of synthetic $\pi$-conjugated oligopeptides into optoelectronic nanostructures. The electronic properties provide the basis for an array of organic electronic devices, such as light-emitting diodes, field-effect transistors, and solar cells. Control of the structure, stability, and kinetics of self-assembled organic electronics by tuning monomer chemistry and environmental conditions presents a powerful route to the fabrication of biocompatible “designer materials.” We have performed coarse-grained simulations of the self-assembly of several hundred peptides over microsecond time scales to probe the morphology and kinetics of aggregation with molecular-level detail. We have subsequently used this simulation data to parameterize a kinetic aggregation model based on Smoluchowski coagulation theory to enable prediction of aggregation dynamics on millisecond time scales. These numerical models are now being integrated into a multi-physics model of peptide aggregation in a microfluidic flow cell developed by our experimental collaborators to model the self-assembly of diverse peptide architectures under tailored flow-fields for the fabrication of biocompatible assemblies with defined morphology and optoelectronic function.
–
Authors
-
Rachael Mansbach
Univ of Illinois - Urbana
-
Andrew Ferguson
Univ of Illinois - Urbana, University of Illinois Urbana-Champaign