Scattering on hyperbolic microspheres: From photonic nanojets to Poisson-Arago bright spots
POSTER
Abstract
We investigate optical properties of metal-dielectric metamaterial microspheres composed of subwavelength spherical shells of two different materials alternating in an onion-layer fashion. Recently such metamaterial spheres were considered as cavities and their whispering gallery modes were investigated. We focus on the scattering of external radiation by the meta-micropheres in this work. We show that different scenarios are produced by altering the metal fraction in the spheres: as the microsphere transitions from all-dielectric to hyperbolic to all-metal, the photonic nanojets transform into Poisson-Arago bright spots. A new phenomenon also emerges as the percentage of metal in the microsphere increases. ``Hot spots'' of optical fields intensity appear at the center of the sphere. Their intensity is much higher than that of the incident plane wave.
Authors
-
Reed Hodges
Georgia Southern University
-
Cleon Dean
Georgia Southern University
-
Maxim Durach
Georgia Southern University