Quantum linear systems algorithm with exponentially improved dependence on precision

ORAL

Abstract

Harrow, Hassidim, and Lloyd showed that for a suitably specified $N \times N$ matrix $A$ and $N$-dimensional vector $\vec{b}$, there is a quantum algorithm that outputs a quantum state proportional to the solution of the linear system of equations $A\vec{x}=\vec{b}$. If $A$ is sparse and well-conditioned, their algorithm runs in time polynomial in $\log N$ and $1/\epsilon$, where $\epsilon$ is the desired precision in the output state. We improve this to an algorithm whose running time is polynomial in $\log(1/\epsilon)$, exponentially improving the dependence on precision while keeping essentially the same dependence on other parameters. Our algorithm is based on a general technique for implementing any operator with a suitable Fourier or Chebyshev series representation. This allows us to bypass the quantum phase estimation algorithm, whose dependence on $\epsilon$ is prohibitive.

Authors

  • Rolando Somma

    Los Alamos National Laboratory

  • Andrew Childs

    University of Maryland

  • Robin Kothari

    Massachusetts Institute of Technology