Magnon emission and radiation induced by spin--polarized current.

ORAL

Abstract

The spin-torque effect due to spin injection into ferromagnets can affect their effective dynamical damping, and modify the magnon populations. The latter leads to the onset of nonlinear damping that can prevent spontaneous current-induced magnetization oscillations. It has been argued that these nonlinear processes can be eliminate by the radiation of magnons excited by local spin injection in extended magnetic films. To test these effects, studied of the effects of spin injection on the magnon populations in nanoscale spin valves and magnetic point contacts. Measurements of the giant magnetoresistance show a significant resistance component that is antisymmetric in current, and linearly dependent on temperature T. This component is significantly larger for the nanopatterned ferromagnets than for point contacts. We interpret our observations in terms of stimulated generation of magnons by the spin current, and their radiation in point contacts. 1. V.E. Demidov, S. Urazhdin, H. Ulrichs, V. Tiberkevich, A. Slavin, D. Baither, G. Schmitz, and S. O. Demokritov, Nature Mater., \textbf{11}, 1028-1031 (2012)

Authors

  • Andrei Zholud

    Emory University

  • Ryan Freeman

    Emory University

  • Rongxing Cao

    Emory University

  • Sergei Urazhdin

    Emory University