Precise quantum control on solid-state spins
POSTER
Abstract
Precise quantum control is of great importance for quantum information processing, high resolution spectroscopy, and quantum metrology. One of the key obstacles to realizing precise quantum control on solid-state spins is the noises arising from both environment and control field. Here, we design a composite pulse to realize precise quantum control on a single electron spin in diamond by suppressing the effect of both noises simultaneously. The control is experimentally demonstrated to be with a low error rate of 4.8E-5. We improve quantum optimal control method to realize precise two-qubit quantum control on a system comprised by a single electron spin and $^{14}$N nuclear spin. With the improved quantum optimal control method, we design a pulse sequence for CNOT gate to suppress the noises simultaneously. The error rate of CNOT gate is measured to be 8E-3. To the best of our knowledge, the control we have realized stands for the state of art in precise quantum control on solid-state spins.
Authors
-
Jianpei Geng
University of Science and Technology of China