Computational design of hepatitis C vaccines using empirical fitness landscapes and population dynamics
ORAL
Abstract
Hepatitis C virus (HCV) afflicts 170 million people and kills 350,000 annually. Vaccination offers the most realistic and cost effective hope of controlling this epidemic. Despite 25 years of research, no vaccine is available. A major obstacle is the virus' extreme genetic variability and rapid mutational escape from immune pressure. Improvements in the vaccine design process are urgently needed. Coupling data mining and maximum entropy inference, we have developed a computational approach to translate sequence databases into empirical fitness landscapes. These landscapes explicitly connect viral genotype to phenotypic fitness and reveal vulnerable targets that can be exploited to rationally design vaccines. These landscapes represent the mutational "playing field" over which the virus evolves. We have integrated them with agent-based models of the viral mutational and host immune response, establishing a data-driven multi-scale immune simulator. We have used this simulator to perform in silico screening of HCV immunogens to rationally design vaccines to both cripple viral fitness and block escape. By systematically identifying a small number of promising vaccine candidates, these models can accelerate the search for a vaccine by massively reducing the experimental search space.
–
Authors
-
Gregory Hart
Univ of Illinois - Urbana
-
Andrew Ferguson
Univ of Illinois - Urbana, University of Illinois at Urbana-Champaign