Linking Microstructural Evolution and Tribology in Metallic Contacts

ORAL

Abstract

Tribologists rely on phenomenological models to describe the seemingly disjointed steady-state regimes of metal wear. Pure metals such as gold -- frequently used in electrical contacts -- exhibit high friction and wear. In contrast, nanocrystalline metals often show much lower friction and wear. The engineering community has generally used a phenomenological connection between hardness and friction/wear to explain this macroscale response and guide designs. We present results of recent simulations and experiments that demonstrate a general framework for connecting materials properties (i.e. microstructural evolution) to tribological response. We present evidence that competition between grain refinement (from cold working), grain coarsening (from stress-induced grain growth), and wear (delamination and plowing) can be used to describe transient and steady state tribological behavior of metals, alloys and composites. We explore the seemingly disjointed steady-state friction regimes of metals and alloys, with a goal of elucidating the structure-property relationships, allowing for the engineering of tribological materials and contacts based on the kinetics of grain boundary motion. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Authors

  • Michael Chandross

    Sandia National Laboratories, Materials Science and Engineering Center, Sandia National Laboratories, Albuquerque, NM 87185

  • Shengfeng Cheng

    Dept. of Physics - Virginia Tech, Virginia Polytechnic Institute and State University, Department of Physics, Virginia Polytechnic Institute and State University, Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA

  • Nicolas Argibay

    Sandia National Laboratories