Progress and Challenges for Engineering Superconducting Qubits

ORAL · Invited

Abstract

Superconducting qubits are coherent artificial atoms assembled from electrical circuit elements and microwave optical components. Their lithographic scalability, compatibility with microwave control, and operability at nanosecond time scales all converge to make the superconducting qubit a highly attractive candidate for the constituent logical elements of a quantum information processor. In this talk, we review the progress and challenges of engineering superconducting quantum computing implementations.

Presenters

  • William Oliver

    MIT Lincoln Laboratory, MIT Lincoln Lab, Massachusetts Institute of Technology & MIT Lincoln Laboratory, Department of Physics, Research Laboratory of Electronics, Lincoln Laboratory, Massachusetts Institute of Technology, Massachusetts Inst of Tech-MIT, Department of Physics, Research Laboratory of Electronics, Lincoln Laboratory, Massachusetts Inst of Tech-MIT, MIT, Lincoln Laboratory, Research Laboratory of Electronics, and Department of Physics, Massachusetts Institute of Technology, Department of Physics, Research Laboratory of Electronics, Lincoln Laboratory, Massachusetts institute of Technology

Authors

  • William Oliver

    MIT Lincoln Laboratory, MIT Lincoln Lab, Massachusetts Institute of Technology & MIT Lincoln Laboratory, Department of Physics, Research Laboratory of Electronics, Lincoln Laboratory, Massachusetts Institute of Technology, Massachusetts Inst of Tech-MIT, Department of Physics, Research Laboratory of Electronics, Lincoln Laboratory, Massachusetts Inst of Tech-MIT, MIT, Lincoln Laboratory, Research Laboratory of Electronics, and Department of Physics, Massachusetts Institute of Technology, Department of Physics, Research Laboratory of Electronics, Lincoln Laboratory, Massachusetts institute of Technology