A living-dead magnetic layer in ferrimagnetic DyTiO3 thin films and how to revive it
ORAL
Abstract
When ferromagnetic films become ultrathin, key properties such as the Curie temperature and the saturation magnetization are usually depressed. This effect has been thoroughly investigated in half-metallic manganites, but much less in ferrimagnetic insulating perovskites such as rare-earth titanates RTiO3, despite the appeal of these materials to design correlated two-dimensional electron gases. Here, we report on the magnetic properties of epitaxial DyTiO3 thin films. Above 50 nm the films show a bulk-like response, but surprisingly their saturation magnetization strongly increases at low thickness. We model this behavior using a classical model of “dead layer” but we assume that this layer is actually “living”, i.e. it responds to the magnetic field through a strong paramagnetic susceptibility. Through depth-dependent X-ray spectroscopy, we show that the “living-dead layer” corresponds to surface regions where magnetic (S=1/2) Ti3+ become non-magnetic Ti4+ ions, leaving Dy3+ ions magnetically uncoupled and thus unleashing their paramagnetic response. Accordingly, we find that capping the film with an epitaxial LaAlO3 layer preserves the Ti3+ state and restores the pristine ferrimagnetic behavior.
–
Presenters
-
Raphael Aeschlimann
CNRS / Thales
Authors
-
Raphael Aeschlimann
CNRS / Thales
-
Daniele Preziosi
IPCMS
-
Julien Varignon
CNRS / Thales
-
Cinthia Piamonteze
PSI
-
Florin Radu
BESSY II
-
Sergio Valencia
BESSY II
-
Jacobo Santamaria
Universidad Complutense de Madrid, GFMC Departamento de Física de Materiales, Universidad Complutense, GFMC, Departamento Física Aplicada III, Universidad Complutense Madrid, Complutense University of Madrid
-
A. Barthélémy
Thales,CNRS, CNRS / Thales
-
Manuel Bibes
Unite Mixte de Physique CNRS/Thales, Unité Mixte de Physique, CNRS, CNRS/Thales, Unité Mixte de Physique CNRS/Thales, Unité Mixte de Physique CNRS Thales, Université Paris-Saclay, CNRS Paris, CNRS / Thales, Unité Mixte de Physique CNRS Thales