Nanoscale imaging of surface acoustic waves with stroboscopic scanning x-ray diffraction microscopy

ORAL

Abstract

In quantum electronics the manipulation of strain near isolated point defects and engineered structures is central to harnessing the potential of solid-state qubits for hybrid quantum systems and nanoscale sensing. While lattice strain can be used both statically and dynamically to tune quantum energy levels and engineer hybrid system response, the direct observation of nanoscale strain fields induced near quantum defects is extremely challenging as this strain is localized near a defect potentially microns from surface and varying in time. We report preliminary results of a stroboscopic Scanning X-ray Diffraction Microscopy (s-SXDM) imaging approach using 10 keV photons focused to a ~20 nm FWHM beam waist at the CNM Hard X-ray Nanoprobe, in which ~30 ps x-ray pulses from the APS were synchronized to a Surface Acoustic Wave (SAW) launcher in order achieve static time domain and phase sensitive Bragg diffraction imaging at radio frequencies with nanoscale spatial resolution. We use this technique to simultaneously map near-surface microstructure, atomic fluorescence, and acoustically induced lattice curvatures generated by interdigitated transducers fabricated on 4H-SiC which hosts vacancy related spin defects for quantum sensing and information.

Presenters

  • Samuel Whiteley

    Univ of Chicago, Institute for Molecular Engineering, University of Chicago, University of Chicago

Authors

  • Samuel Whiteley

    Univ of Chicago, Institute for Molecular Engineering, University of Chicago, University of Chicago

  • F. Joseph Heremans

    Materials Science Division, Argonne National Laboratory

  • David Awschalom

    Univ of Chicago, Institute for Molecular Engineering, University of Chicago, University of Chicago

  • Martin Holt

    Center for Nanoscale Materials, Argonne National Laboratory