Evaluation of Machine Learning Methods for the Prediction of Key Properties for Novel Transparent Semiconductors
ORAL
Abstract
The performance of several machine-learning models (such as the sure independence screening and sparsifying operator [SISSO], the many-body tensor representation, subgroup discovery, random forests, support vector machines, etc) wil be summerized. A key realization from this examination is the importance of including local atomic information as input features or descriptors for the prediction of materials properties that can vary substantially with lattice site decorations.
–
Presenters
-
Christopher Sutton
Fritz Haber Institute of the Max Planck Society, Theory , Fritz-Haber Institute, Chemistry, Duke University, Theory Department, Fritz Haber Institute
Authors
-
Christopher Sutton
Fritz Haber Institute of the Max Planck Society, Theory , Fritz-Haber Institute, Chemistry, Duke University, Theory Department, Fritz Haber Institute
-
Christopher Bartel
University of Colorado, University of Colorado Boulder
-
Xiangyue Liu
Theory , Fritz-Haber Institute
-
Mario Boley
Max Planck Institute for Informatics
-
Matthias Rupp
Theory , Fritz-Haber Institute
-
Luca Ghiringhelli
Fritz Haber Institute of the Max Planck Society, Theory, Fritz Haber Institute of the Max Planck Society, Theory , Fritz-Haber Institute, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin-Dahlem, Germany, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Theory Department, Fritz Haber Institute
-
Matthias Scheffler
Fritz Haber Institute of the Max Planck Society, Theory, Fritz Haber Institute of the Max Planck Society, Fritz-Haber-Institut der Max-Planck-Gesselschaft, Theory , Fritz-Haber Institute, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin-Dahlem, Germany, Theory Department, Fritz Haber Institute