Directed self-assembly in two and three dimensions
Invited
Abstract
Directed self-assembly (DSA) is a promising strategy for high-volume cost-effective manufacturing at the nanoscale. Materials that self-assemble form nanostructures with precise, predictable and reproducible dimensions at length scales at the molecular and atomic scale. Unfortunately, the micrometer areas or volumes over which the materials self-assemble with adequate perfection in structure is often incommensurate with the macroscopic dimensions of devices and systems of devices of industrial relevance. Directed self-assembly (DSA) refers to the integration of self-assembling materials with templates to impact structural precision and therefore functionality to self-assembling materials over macroscopic dimensions. Here I will discuss the use of lithographically-defined chemically patterned surfaces to direct the assembly of block copolymers and liquid crystal systems in two and three dimensions for applications in semiconductor manufacturing, ion-conducting membranes, and optoelectronics. In addition, I will highlight the fundamental understanding gained by comparing and contrasting the two materials systems, and how progress in DSA has been enabled and accelerated by a combined experimental and theoretical approach.
–
Authors
-
Paul Nealey
University of Chicago, Univ of Chicago, Institute for Molecular Engineering, The University of Chicago, University of Chicago and Argonne National Laboratory, Institute for Molecular Engineering, University of Chicago