Correlating Morphology and Electronic Structure of MoS2 on Au(111)

ORAL

Abstract

Two-dimensional materials (2DMs) subjected to superperiodic potentials show exciting effects such as replica bands and minigaps in the electronic structure. In addition, the locally varying potential landscape can induce ordered superstructures of atoms, molecules and metallic clusters. Such superperiodic potentials can arise spontaneously in 2DMs epitaxially grown on metallic substrates, where the lattice mismatch leads to a moiré pattern. In consequence, depending on the strength of interaction, the 2DM can display a structural modulation (corrugation) which can show charge inhomogeneity and localized states.
In the present work, the morphology and electronic structure of single-layer MoS2 epitaxially grown on Au(111) are studied by means of x-ray standing waves (XSW), scanning tunneling spectroscopy (STS) and first-principles calculations based on density functional theory (DFT). The XSW data and the DFT model indicate a nearly flat, weakly interacting layer of MoS2 with a peak-to-peak corrugation of only 0.3 Å and a large separation of approximately 2.7 Å between the Au(111) surface and the bottom sulfur layer in the MoS2. Still, the local probe of STS measurements shows the changes in the electronic structure along the moiré unit cell caused by the site-dependent interaction.

Presenters

  • Caio Silva

    Institut für Materialphysik, Universität Münster

Authors

  • Caio Silva

    Institut für Materialphysik, Universität Münster

  • Daniela Dombrowski

    Institut für Materialphysik, Universität Münster

  • Nicolae Atodiresei

    Peter Grünberg Institut (PGI) and Institute for Advanced Simulation (IAS), Forschungszentrum Jülich and JARA

  • Wouter Jolie

    II. Physikalisches Institut, Universität zu Köln

  • Ferdinand Farwick zum Hagen

    II. Physikalisches Institut, Universität zu Köln

  • Pardeep Thakur

    Diamond Light Source

  • Vasile Caciuc

    Peter Grünberg Institut (PGI) and Institute for Advanced Simulation (IAS), Forschungszentrum Jülich and JARA

  • Thomas Michely

    II. Physikalisches Institut, Universität zu Köln

  • Stefan Bluegel

    Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, Peter Grünberg Institute and Institute for Advanced Simulation, Forschungszentrum Jülich, Peter Grünberg Institut, Forschungszentrum Jülich, Peter Grünberg Institut (PGI) and Institute for Advanced Simulation (IAS), Forschungszentrum Jülich and JARA, PGI-1, Forschungszentrum Jülich, Forschungszentrum Julich GmbH, PGI-1, FZ Juelich

  • Tien-Lin Lee

    Diamond Light Source

  • Carsten Busse

    Department Physik, Universität Siegen