Coherent spin-qubit photon coupling: Part 2

ORAL

Abstract

Coherent coupling of long-distance spins is a crucial step towards quantum information processing with spin-qubits. We use a circuit quantum electrodynamics architecture to demonstrate strong coupling between single microwave photons in a high impedance NbTiN cavity and a three-electron spin-qubit in a GaAs triple quantum dot. We resolve the vacuum Rabi mode splitting with a coupling strength of g/2π≈31MHz and a qubit decoherence rate of γ2/2π≈20MHz. The spin-qubit is formed by exchange interaction, which couples the spin with the orbital degrees of freedom. We can directly access the amount of spin-charge coupling strength electrostatically. This allows us to tune both the qubit-photon coupling strength as well as the qubit decoherence. From dispersive two-tone spectroscopy measurements we extract a minimum qubit decoherence rate of γ2/2π≈10MHz for a coupling strength of g/2π≈23MHz. We also observe an ac Stark shift of the qubit frequency, which allows us to calibrate the number of photons in the resonator and gives direct access to the qubit-photon coupling strength.

Presenters

  • Andreas Landig

    ETH - Zurich, Physics, ETH Zurich, Department of Physics, ETH Zurich

Authors

  • Andreas Landig

    ETH - Zurich, Physics, ETH Zurich, Department of Physics, ETH Zurich

  • Jonne Koski

    ETH - Zurich, ETH Zurich, Physics, ETH Zurich, Department of Physics, ETH Zurich

  • Pasquale Scarlino

    ETH - Zurich, Delft University of Technology, Physics, ETH Zurich, Department of Physics, ETH Zurich

  • Udson Mendes

    Institut quantique and Department de Physique, Universite de Sherbrooke, Physics, University of Sherbrooke, Institut quantique and Départment de Physique, Université de Sherbrooke

  • Alexandre Blais

    Institut quantique and Departement de Physique, Universite de Sherbrooke, Physique, Institut Quantique, University of Sherbrooke, Institut quantique and Department de Physique, Universite de Sherbrooke, Physique, Universite de Sherbrooke, Physics, University of Sherbrooke, Institut quantique and Départment de Physique, Université de Sherbrooke, Institut Quantique and Département de Physique, Université de Sherbrooke, Univ of Sherbrooke, Institut Quantique and Département de Physique, Université de Sherbooke, Institut quantique and Département de Physique, Université de Sherbrooke, Department of Physics, University of Sherbrooke

  • Christian Reichl

    ETH - Zurich, Solid State Physics Laboratory, ETH Zurich, ETH Zurich, Physics, ETH Zurich, Department of Physics, ETH Zurich, Laboratory for Solid State Physics, ETH Zürich, Laboratorium fur Festkorperphysik, , ETH-Zurich, Laboratorium für Festkörperphysik, ETH Zürich

  • Werner Wegscheider

    ETH - Zurich, Solid State Physics Laboratory, ETH Zurich, ETH Zurich, Physics, ETH Zurich, Department of Physics, ETH Zurich, Laboratory for Solid State Physics, ETH Zürich, Laboratorium fur Festkrperphysik, ETH-Zurich, Laboratorium fur Festkorperphysik, , ETH-Zurich, ETH Zürich, Laboratorium für Festkörperphysik, ETH Zürich, Laboratorium fur Festkorperphysik, ETH-Zurich

  • Andreas Wallraff

    ETH - Zurich, Physics, ETH Zurich, Department of Physics, ETH Zurich, Department of Physics, ETH Zürich, ETH Zurich

  • Klaus Ensslin

    Physics, ETH Zurich, ETH - Zurich, Physics, ETH - Zurich, Department of Physics, ETH Zurich

  • Thomas Ihn

    Physics, ETH Zurich, ETH - Zurich, Physics, ETH - Zurich, Department of Physics, ETH Zurich