Strong coupling of a microwave photon to spin and charge qubits in GaAs quantum dots

Invited

Abstract

We demonstrate the strong coupling limit of cavity QED with individual charges and spins in GaAs quantum dots by using the enhancement of the electric component of the vacuum fluctuations of a resonator with impedance beyond the typical 50 Ohm of standard coplanar waveguide technology. In a first experiment [1], we have realized a frequency - tunable microwave resonator with high impedance implemented by using the large inductance of a SQUID array combined with a small stray capacitance. Its inductance, and thus also its impedance and resonance frequency, is tunable by applying a small magnetic field using a mm-sized coil mounted on the sample holder. In the resonant regime, we resolve the vacuum Rabi mode splitting of 238 MHz at a resonator linewidth 12 MHz and a charge qubit decoherence rate of 40 MHz extracted independently from microwave spectroscopy in the dispersive regime. In a second experiment [2], we couple a spin qubit in a GaAs triple quantum dot to a high impedance NbTiN superconducting resonator which can sustain finite magnetic fields. We resolve the vacuum Rabi mode splitting with a coupling strength of 31 MHz and a spin-qubit decoherence rate of 20 MHz. We can tune coupling and decoherence electrostatically and obtain a minimal decoherence rate of 8.6 MHz. We directly measure the dependence of coupling strength on the tunable electric dipole moment of the qubit using the ac Stark effect.
[1] A. Stockklauser, P. Scarlino, et al., Phys. Rev. X 7, 011030 (2017)
[2] A. Landig, J. Koski, P. Scarlino et al., arXiv

Presenters

  • Klaus Ensslin

    Physics, ETH Zurich, ETH - Zurich, Physics, ETH - Zurich, Department of Physics, ETH Zurich

Authors

  • Andreas Landig

    ETH - Zurich, Physics, ETH Zurich, Department of Physics, ETH Zurich

  • Jonne Koski

    ETH - Zurich, ETH Zurich, Physics, ETH Zurich, Department of Physics, ETH Zurich

  • Pasquale Scarlino

    ETH - Zurich, Delft University of Technology, Physics, ETH Zurich, Department of Physics, ETH Zurich

  • Udson Mendes

    University of Sherbrooke, Physique, Universite de Sherbrooke

  • Anna Stockklauser

    ETH - Zurich, Physics, ETH Zurich

  • Alexandre Blais

    Institut quantique and Departement de Physique, Universite de Sherbrooke, Physique, Institut Quantique, University of Sherbrooke, Institut quantique and Department de Physique, Universite de Sherbrooke, Physique, Universite de Sherbrooke, Physics, University of Sherbrooke, Institut quantique and Départment de Physique, Université de Sherbrooke, Institut Quantique and Département de Physique, Université de Sherbrooke, Univ of Sherbrooke, Institut Quantique and Département de Physique, Université de Sherbooke, Institut quantique and Département de Physique, Université de Sherbrooke, Department of Physics, University of Sherbrooke

  • Christian Reichl

    ETH - Zurich, Physics, ETH Zurich, Department of Physics, ETH Zurich, Laboratorium fur Festkrperphysik, ETH-Zurich

  • Werner Wegscheider

    ETH - Zurich, Solid State Physics Laboratory, ETH Zurich, ETH Zurich, Physics, ETH Zurich, Department of Physics, ETH Zurich, Laboratory for Solid State Physics, ETH Zürich, Laboratorium fur Festkrperphysik, ETH-Zurich, Laboratorium fur Festkorperphysik, , ETH-Zurich, ETH Zürich, Laboratorium für Festkörperphysik, ETH Zürich, Laboratorium fur Festkorperphysik, ETH-Zurich

  • Andreas Wallraff

    ETH - Zurich, Physics, ETH Zurich, Department of Physics, ETH Zurich, Department of Physics, ETH Zürich, ETH Zurich

  • Thomas Ihn

    Physics, ETH Zurich, ETH - Zurich, Physics, ETH - Zurich, Department of Physics, ETH Zurich

  • Klaus Ensslin

    Physics, ETH Zurich, ETH - Zurich, Physics, ETH - Zurich, Department of Physics, ETH Zurich