Weak three-dimensional mediators of two-dimensional triplet pairing

ORAL

Abstract

Recent experiments demonstrate the ability to construct cold atom mixtures with species selective optical lattices. This allows for the possibility of a mixed-dimension system, where one fermionic atomic species is confined to a two dimensional lattice, while another species is confined to a three dimensional lattice that contains the two-dimensional one. We show that by tuning the density of an arbitrary number of three-dimensional atomic species, we can engineer an arbitrary, rotationally-symmetric, density-density, effective interaction for the two-dimensional particles. This possibility allows for an effective interaction that favours triplet pairing for two-dimensional, SU(2) symmetric particles. Using a functional renormalization-group analysis for the two-dimensional particles, we derive and numerically confirm that the critical temperature for triplet pairing depends exponentially on the effective interaction strength. We then analyse how the stability of this phase is affected by the particle densities and the fine tuning of interaction parameters.

Presenters

  • Shan-wen Tsai

    Physics and Astronomy, UC Riverside, Univ of California - Riverside, Physics and Astronomy, Univ of California - Riverside, Physics, Univ of California - Riverside

Authors

  • Shan-wen Tsai

    Physics and Astronomy, UC Riverside, Univ of California - Riverside, Physics and Astronomy, Univ of California - Riverside, Physics, Univ of California - Riverside

  • Shane Kelly

    Univ of California - Riverside