Microtubules and Motor Proteins for Synthetic Beating Cilia

ORAL

Abstract

In nature, many vital processes rely on fluid flow based transport of cargo in order to overcome the time constraint of diffusive transport. The most common transport motif involves flows driven by cilia or flagella, from removal of pollutants in the trachea to the movement of microscopic organisms in viscous fluid environments. Cilia are microscopic hair-like structures, flexible membrane extensions of the cell that present a rhythmic waving or beating motion. Each cilium comprises microtubule-doublet bundles held together by several proteins.
We aim to develop synthetic ciliated systems able to propel themselves or to move fluids across a fixed surface. By assembling a simple system made of just a few building blocks adapted from natural cilia, namely microtubules and motor proteins, the issue that we address is: how simple is the simplest system that is able to beat?
By using the motor protein kinesin-1 we synthesized microtubules structures powered by ATP hydrolysis that are able to generate spontaneous oscillations. By binding them to a surface using a suitable anchor system, we can observe the microtubules-motor protein system oscillations in a manner that closely mimics ciliary movement.

Presenters

  • Isabella Guido

    Max Planck Inst

Authors

  • Isabella Guido

    Max Planck Inst

  • Alexey Feofanov

    University of Innsbruck, University of Waterloo, Korea University, Okinawa Institute of Science and Technology, University of California - Los Angeles, The University of Manchester, University of Puerto Rico at Humacao, Department of Physics & Electronics, University of Puerto Rico at Cayey, Department of Mathematics-Physics, Oak Ridge National Lab, Max Planck Institute for Chemical Physics of Solids, Department of Physics, University of Puerto Rico, Electrical Engineering Department, University of Arkansas, Department of Physics, University of Arkansas, School of Basic Sciences at IIT Mandi, H.P., India, Computational Biology, Flatiron Institute, Physics, Hong Kong Univ of Sci & Tech, University of California, Los Angeles, Max Planck Inst, Institute for Theoretical Physics, University of Cologne, Department of Physics, Simon Fraser University, Deutsches Elektronen Synchrotron (DESY), Institut fur Theoretische Physik, Univerisitat zu Berlin, Institut fur Physik, Univerisitat zu Berlin, Plymouth State University, The Graduate Center, CUNY, Nordita, KTH Royal Institute of Technology and Stockholm University, Univ of Connecticut - Storrs, Univ Stuttgart, University of Chicago, University of Texas at El Paso, University of Tulsa, California Institute of Technology, Georgia Institute of Technology, Universite Paris Diderot, Laboratoire MPQ, Universita di Trento, BEC Center, ICTP Trieste, Universita di Pisa, Inst of Physics Academia Sinica, Batelle, Cal State Univ- San Bernardino, Chemical Engineering, University of Michigan, QCD Labs, Department of Applied Physics, Aalto University, Yale University, MIT, Harvard Univ, Chemical & Environmental Engineering, University of California, Riverside, University of Frankfurt, Germany, University of Hamburg, Germany, Naval Research Laboratory, Cornell Univ, National Institute for Material Science, U.S. Naval Research Laboratory, Washington DC, Materials Engineering, University of Santa Barbara, Institute of Physics, Chinese Academy of Sciences, Univ of Texas, Arlington, MIT Lincoln Laboratory, University of Sydney, Iowa State University, Purdue University, Kansas State University, University of Maryland, John Hopkins University, Universite de Sherbrooke, Physics, Konkuk University, Perimeter Institute, University of Waterloo, D-Wave, San Jose State University, Université de Sherbrooke, Institute of Physics, EPFL - Lausanne​

  • Alexey Feofanov

    University of Innsbruck, University of Waterloo, Korea University, Okinawa Institute of Science and Technology, University of California - Los Angeles, The University of Manchester, University of Puerto Rico at Humacao, Department of Physics & Electronics, University of Puerto Rico at Cayey, Department of Mathematics-Physics, Oak Ridge National Lab, Max Planck Institute for Chemical Physics of Solids, Department of Physics, University of Puerto Rico, Electrical Engineering Department, University of Arkansas, Department of Physics, University of Arkansas, School of Basic Sciences at IIT Mandi, H.P., India, Computational Biology, Flatiron Institute, Physics, Hong Kong Univ of Sci & Tech, University of California, Los Angeles, Max Planck Inst, Institute for Theoretical Physics, University of Cologne, Department of Physics, Simon Fraser University, Deutsches Elektronen Synchrotron (DESY), Institut fur Theoretische Physik, Univerisitat zu Berlin, Institut fur Physik, Univerisitat zu Berlin, Plymouth State University, The Graduate Center, CUNY, Nordita, KTH Royal Institute of Technology and Stockholm University, Univ of Connecticut - Storrs, Univ Stuttgart, University of Chicago, University of Texas at El Paso, University of Tulsa, California Institute of Technology, Georgia Institute of Technology, Universite Paris Diderot, Laboratoire MPQ, Universita di Trento, BEC Center, ICTP Trieste, Universita di Pisa, Inst of Physics Academia Sinica, Batelle, Cal State Univ- San Bernardino, Chemical Engineering, University of Michigan, QCD Labs, Department of Applied Physics, Aalto University, Yale University, MIT, Harvard Univ, Chemical & Environmental Engineering, University of California, Riverside, University of Frankfurt, Germany, University of Hamburg, Germany, Naval Research Laboratory, Cornell Univ, National Institute for Material Science, U.S. Naval Research Laboratory, Washington DC, Materials Engineering, University of Santa Barbara, Institute of Physics, Chinese Academy of Sciences, Univ of Texas, Arlington, MIT Lincoln Laboratory, University of Sydney, Iowa State University, Purdue University, Kansas State University, University of Maryland, John Hopkins University, Universite de Sherbrooke, Physics, Konkuk University, Perimeter Institute, University of Waterloo, D-Wave, San Jose State University, Université de Sherbrooke, Institute of Physics, EPFL - Lausanne​

  • Eberhard Bodenschatz

    Max Planck Inst, Max Planck Institute for Dynamics and Self-Organization, LFPB, MPI for Dynamics and Self-Organization, Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization