Coherent Transmon-Charge Qubit Coupling Mediated by Virtual Photon Exchange in a High Impedance Resonator.

ORAL

Abstract

We explore the coupling of the charge degree of freedom of electrons confined in a GaAs/AlGaAs double quantum dot (DQD) to a superconducting transmon qubit in the circuit QED architecture. In this work, we realize a proof of concept experiment in which the coupling between a transmon qubit and a DQD qubit is mediated by virtual microwave photon excitations in a tunable high impedance SQUID array resonator, which acts as a quantum bus enabling long range coupling between dissimilar qubits. Our device hosts a DQD capacitively coupled to a SQUID array resonator, which in turn is coupled to a single island transmon. The device is further equipped with a flux line for fast control of the transmon frequency, and with a 50 Ω CPW resonator capacitively coupled to the transmon for readout. Realizing a well controlled interface between semiconductor and superconductor-based quantum computing architectures will allow to take full advantage of those two solid states quantum systems for hybrid-quantum processors and will enable the use of both charge and flux degrees of freedom in the same device. The methods and techniques developed in this work are expected to be transferable to other material systems.

Presenters

  • Pasquale Scarlino

    ETH - Zurich, Delft University of Technology, Physics, ETH Zurich, Department of Physics, ETH Zurich

Authors

  • Pasquale Scarlino

    ETH - Zurich, Delft University of Technology, Physics, ETH Zurich, Department of Physics, ETH Zurich

  • David Van Woerkom

    ETH - Zurich

  • Udson Mendes

    University of Sherbrooke, Physique, Universite de Sherbrooke

  • Simone Gasparinetti

    ETH - Zurich, Department of Physics, ETH Zürich, Department of Physics, ETH Zurich

  • Jonne Koski

    ETH - Zurich, ETH Zurich, Physics, ETH Zurich, Department of Physics, ETH Zurich

  • Andreas Landig

    ETH - Zurich, Physics, ETH Zurich, Department of Physics, ETH Zurich

  • Christian Reichl

    ETH - Zurich, Solid State Physics Laboratory, ETH Zurich, ETH Zurich, Physics, ETH Zurich, Department of Physics, ETH Zurich, Laboratory for Solid State Physics, ETH Zürich, Laboratorium fur Festkorperphysik, , ETH-Zurich, Laboratorium für Festkörperphysik, ETH Zürich

  • Werner Wegscheider

    ETH - Zurich, Solid State Physics Laboratory, ETH Zurich, ETH Zurich, Physics, ETH Zurich, Department of Physics, ETH Zurich, Laboratory for Solid State Physics, ETH Zürich, Laboratorium fur Festkrperphysik, ETH-Zurich, Laboratorium fur Festkorperphysik, , ETH-Zurich, ETH Zürich, Laboratorium für Festkörperphysik, ETH Zürich, Laboratorium fur Festkorperphysik, ETH-Zurich

  • Thomas Ihn

    Physics, ETH Zurich, ETH - Zurich, Physics, ETH - Zurich, Department of Physics, ETH Zurich

  • Klaus Ensslin

    Physics, ETH Zurich, ETH - Zurich, Physics, ETH - Zurich, Department of Physics, ETH Zurich

  • Alexandre Blais

    Institut quantique and Departement de Physique, Universite de Sherbrooke, Physique, Institut Quantique, University of Sherbrooke, Institut quantique and Department de Physique, Universite de Sherbrooke, Physique, Universite de Sherbrooke, Physics, University of Sherbrooke, Institut quantique and Départment de Physique, Université de Sherbrooke, Institut Quantique and Département de Physique, Université de Sherbrooke, Univ of Sherbrooke, Institut Quantique and Département de Physique, Université de Sherbooke, Institut quantique and Département de Physique, Université de Sherbrooke, Department of Physics, University of Sherbrooke

  • Andreas Wallraff

    ETH - Zurich, Physics, ETH Zurich, Department of Physics, ETH Zurich, Department of Physics, ETH Zürich, ETH Zurich