Longitudinal Coupling for Fast QND Measurement: Numerical Study

ORAL

Abstract

Dispersive qubit readout in circuit QED relies on transverse coupling to a microwave resonator. This type of coupling, however, leads to mixing between qubit and resonator eigenstates. In turn, this leads to Purcell decay and to a breakdown of the quantum non-demolition (QND) aspect of the measurement associated with the critical number photons. An alternative approach avoiding these two issues is longitudinal qubit-resonator coupling [1,2,3]. In this talk, we consider circuit realizations of this idea and perform realistic numerical simulations of the longitudinal measurement. We show that the measurement remains QND at higher power than can be expected under transverse coupling. Moreover, comparing transverse and longitudinal qubit readouts, we show that the latter leads to fast and high-fidelity QND measurements.

[1] Nicolas Didier, Jérôme Bourassa, and Alexandre Blais, Phys. Rev. Lett. 115, 203601, (2015)
[2] P.-M. Billangeon, J. S. Tsai, and Y. Nakamura, Phys. Rev. B 91, 094517, (2015)
[3] Susanne Richer and David DiVincenzo, Phys. Rev. B 93, 134501, (2016)

Presenters

  • Mathieu Lachapelle

    Physique, Institut Quantique

Authors

  • Mathieu Lachapelle

    Physique, Institut Quantique

  • Jerome Bourassa

    Physique, Institut Quantique

  • Alexandre Blais

    Institut quantique and Departement de Physique, Universite de Sherbrooke, Physique, Institut Quantique, University of Sherbrooke, Institut quantique and Department de Physique, Universite de Sherbrooke, Physique, Universite de Sherbrooke, Physics, University of Sherbrooke, Institut quantique and Départment de Physique, Université de Sherbrooke, Institut Quantique and Département de Physique, Université de Sherbrooke, Univ of Sherbrooke, Institut Quantique and Département de Physique, Université de Sherbooke, Institut quantique and Département de Physique, Université de Sherbrooke, Department of Physics, University of Sherbrooke