Probing plasmon-NV0 coupling at the nanometer scale with photons and fast electrons
POSTER
Abstract
The local density of optical states governs an emitters’ lifetime and quantum yield through the Purcell effect. It can be modified by a surface plasmon electromagnetic field, but such a field has a spatial extension limited to a few hundreds of nanometers, complicating the use of optical methods to spatially probe emitter-plasmon coupling. Here we, show that a combination of electron-based imaging, spectroscopies and photon-based correlation spectroscopy enables measurement of the Purcell effect with nanometer and nanosecond spatio-temporal resolutions. Due to the large variability of radiative lifetimes of emitters in nanoparticles we relied on a statistical approach to probe the coupling between nitrogen-vacancy centers in nanodiamonds and surface plasmons in silver nanocubes. We quantified the Purcell effect by measuring the nitrogen-vacancy excited state lifetimes in a large number of either isolated nanodiamonds or nanodiamond-nanocube dimers and demonstrated a significant lifetime reduction for dimers.
Presenters
-
Hugo Lourenco Martins
Laboratoire de Physique des Solides
Authors
-
Hugo Lourenco Martins
Laboratoire de Physique des Solides
-
Mathieu Kociak
Laboratoire de Physique des Solides
-
Sophie Meuret
AMOLF
-
François Treussart
Laboratoire Aimé Cotton
-
Yih Hong Lee
School of Physical and Mathematical Sciences, NTU
-
Xing Yi Ling
School of Physical and Mathematical Sciences, NTU
-
Huan-Cheng Chang
Institute of Atomic and Molecular Sciences, Academia Sinica
-
Luiz Galvao-Tizei
Laboratoire de Physique des Solides