Quantitative Analysis of Surface Losses in Coplanar Waveguide Resonators Part 2: Anisotropic Trenching

ORAL

Abstract

Deep anisotropic etching into the substrate drastically alters the surface participation ratios of coplanar waveguide resonators. This technique provides one method to mitigate losses by reducing overall participation or to shift losses between interfaces for comparison to modeling. Here we demonstrate titanium nitride coplanar waveguide resonators with mean quality factors exceeding two million and controlled trenching reaching 2.2 µm into the silicon substrate. We measure sets of resonators with a range of sizes and trench depths and compare these results with finite-element simulations to demonstrate quantitative agreement with a model of interface dielectric loss. We then apply this analysis to determine the extent to which trenching can improve resonator performance. Furthermore, we report progress on understanding other loss contributions in these systems and the application of trenching to superconducting qubit devices.

Presenters

  • Philip Krantz

    MIT Lincoln Laboratory, MIT Lincoln Lab, Massachusetts Inst of Tech-MIT, MIT

Authors

  • Philip Krantz

    MIT Lincoln Laboratory, MIT Lincoln Lab, Massachusetts Inst of Tech-MIT, MIT

  • Alexander Melville

    MIT Lincoln Laboratory, MIT Lincoln Lab, Massachusetts Inst of Tech-MIT

  • Wayne Woods

    MIT Lincoln Laboratory, MIT Lincoln Lab, Massachusetts Inst of Tech-MIT

  • Rabindra Das

    MIT Lincoln Laboratory, MIT Lincoln Lab, Massachusetts Inst of Tech-MIT

  • Evan Golden

    MIT Lincoln Laboratory, MIT Lincoln Lab, Massachusetts Inst of Tech-MIT

  • Corey Stull

    MIT Lincoln Laboratory, MIT Lincoln Lab, Massachusetts Inst of Tech-MIT

  • Vlad Bolkhovsky

    MIT Lincoln Laboratory, MIT Lincoln Lab

  • Danielle Braje

    MIT Lincoln Laboratory, MIT Lincoln Lab

  • David Hover

    MIT Lincoln Laboratory, MIT Lincoln Lab

  • David Kim

    MIT Lincoln Laboratory, MIT Lincoln Lab, Lincoln Laboratory, Massachusetts Institute of Technology, Massachusetts Inst of Tech-MIT, Lincoln Laboratory, Massachusetts Inst of Tech-MIT

  • Xhovalin Miloshi

    MIT Lincoln Laboratory, MIT Lincoln Lab

  • Danna Rosenberg

    MIT Lincoln Laboratory, MIT Lincoln Lab, Massachusetts Inst of Tech-MIT, Lincoln Laboratory, Massachusetts Inst of Tech-MIT

  • Arjan Sevi

    MIT Lincoln Laboratory, MIT Lincoln Lab

  • Jonilyn Yoder

    MIT Lincoln Laboratory, MIT Lincoln Lab, Lincoln Laboratory, Massachusetts Institute of Technology, Massachusetts Inst of Tech-MIT, Lincoln Laboratory, Massachusetts Inst of Tech-MIT

  • Eric Dauler

    MIT Lincoln Laboratory, MIT Lincoln Lab

  • William Oliver

    MIT Lincoln Laboratory, MIT Lincoln Lab, Massachusetts Institute of Technology & MIT Lincoln Laboratory, Department of Physics, Research Laboratory of Electronics, Lincoln Laboratory, Massachusetts Institute of Technology, Massachusetts Inst of Tech-MIT, Department of Physics, Research Laboratory of Electronics, Lincoln Laboratory, Massachusetts Inst of Tech-MIT, MIT, Lincoln Laboratory, Research Laboratory of Electronics, and Department of Physics, Massachusetts Institute of Technology, Department of Physics, Research Laboratory of Electronics, Lincoln Laboratory, Massachusetts institute of Technology