Hamiltonian Learning on Superconducting Qubits using Bayesian Inference
ORAL
Abstract
–
Presenters
-
Natalie Pearson
Department of Physics, ETH Zurich, Theoretical Physics, ETH Zurich, Theoretische Physik, ETH Zürich, Zürich, Switzerland
Authors
-
Lillian Austin
Center for Quantum Devices, Niels Bohr Institute, Copenhagen
-
Lucas Casparis
Microsoft, Niels Bohr Institute, Univ of Copenhagen, Niels Bohr Institute, Center for Quantum Devices and Microsoft Quantum Lab–Copenhagen, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark, Microsoft Quantum Research, Copenhagen
-
Christopher Granade
Microsoft Corporation Redmond, WA, Microsoft Research, Redmond
-
Albert Hertel
Center for Quantum Devices, Station Q Copenhagen, Niels Bohr Institute, University of Copenhagen, Center for Quantum Devices, Niels Bohr Institute, Copenhagen
-
Natalie Pearson
Department of Physics, ETH Zurich, Theoretical Physics, ETH Zurich, Theoretische Physik, ETH Zürich, Zürich, Switzerland
-
Karl D Petersson
Niels Bohr Institute, Center for Quantum Devices, Station Q Copenhagen, Niels Bohr Institute, University of Copenhagen, Center for Quantum Devices and Microsoft Quantum Lab–Copenhagen, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark, University of Copenhagen, Microsoft Corp, Microsoft Quantum Research, Copenhagen
-
Nathan Wiebe
Microsoft Corporation Redmond, WA, Microsoft Research, Redmond