Surfing on protein waves: proteophoresis as a mechanism for bacterial genome partitioning

ORAL

Abstract

Efficient bacterial chromosome segregation typically requires the coordinated action of a three-component, fueled by adenosine triphosphate machinery called the partition complex. We present a phenomenological model accounting for the dynamic activity of this system that is also relevant for the physics of catalytic particles in active environments. The model is obtained by coupling simple linear reaction-diffusion equations with a proteophoresis, or “volumetric” chemophoresis, force field that arises from protein-protein interactions and provides a physically viable mechanism for complex translocation. This minimal description captures most known experimental observations: dynamic oscillations of complex components, complex separation and subsequent symmetrical positioning. The predictions of our model are in phenomenological agreement with and provide substantial insight into recent experiments. From a non-linear physics view point, this system explores the active separation of matter at micrometric scales with a dynamical instability between static positioning and travelling wave regimes triggered by the dynamical spontaneous breaking of rotational symmetry.

Walter J.-C. et al (2017) Phys. Rev. Lett. 119, 028101.

Presenters

  • Jean-Charles Walter

    Laboratoire Charles Coulomb (L2C), CNRS, Univ. Montpellier, Montpellier, France, Université de Montpellier, Laboratoire Charles Coulomb (L2C), Université de Montpellier (France), CNRS

Authors

  • Jean-Charles Walter

    Laboratoire Charles Coulomb (L2C), CNRS, Univ. Montpellier, Montpellier, France, Université de Montpellier, Laboratoire Charles Coulomb (L2C), Université de Montpellier (France), CNRS

  • Jérôme Dorignac

    Laboratoire Charles Coulomb (L2C), CNRS, Univ. Montpellier, Montpellier, France, Laboratoire Charles Coulomb (L2C), Université de Montpellier (France), Université de Montpellier

  • Vladimir Lorman

    Université de Montpellier

  • Jérôme Rech

    CNRS

  • Jean-Yves Bouet

    CNRS

  • Marcelo Nollmann

    CNRS

  • John Palmeri

    Laboratoire Charles Coulomb (L2C), CNRS, Univ. Montpellier, Montpellier, France, Laboratoire Charles Coulomb (L2C), Université de Montpellier (France), CNRS

  • Andrea Parmeggiani

    Laboratoire Charles Coulomb (L2C), CNRS, Univ. Montpellier, Montpellier, France, Laboratoire Charles Coulomb (L2C), Université de Montpellier (France), Université de Montpellier

  • Frédéric Geniet

    Laboratoire Charles Coulomb (L2C), CNRS, Univ. Montpellier, Montpellier, France, Laboratoire Charles Coulomb (L2C), Université de Montpellier (France), Université de Montpellier