The high-field/high-pressure relationship of magnetic order and nematicity in the heavy fermion superconductor CeRhIn5

ORAL

Abstract

Recently, a nematic signature, i.e. a sudden resistivity anisotropy above a critical field B* = 28 T, has been observed in CeRhIn5[1]. This heavy fermion antiferromagnet (TN = 3.85 K) superconducts under pressure above pc = 23 kbar, associated with an antiferromagnetic quantum critical point (QCP). The reported nematic behavior survives at ambient pressure only until magnetic order is suppressed at a critical field of Bc =51 T, associated with a second QCP[2,3]. An open question is if and how the two QCPs, B-induced nematicity and p-induced superconductivity (SC) are related.
Here we report high-field (up to 65 T) / high-pressure (up to 40 kbar) studies of magnetotransport in CeRhIn5. The combination of plastic diamond-anvil-cells, pulsed magnets, and focused-ion-beam microstructures enabled us to investigate this region in the (p,T,B) phase diagram. We show that nematicity and SC reside in distinct regions. Our experiments reveal a surprising enhancement of magnetic order in high fields with pressure.
[1] Ronning, F. et al., Nature 548, 313 (2017) [2] Jiao L. et al., PNAS 112, 673 (2015) [3] Rosa, P.F.S. et al., arxiv:1803.01748 (2018)

Presenters

  • Toni Helm

    Max Planck Institute for Chemical Physics of Solids, High Magnetic Field Laboratory, Helmholtz Zentrum Dresden Rossendorf

Authors

  • Toni Helm

    Max Planck Institute for Chemical Physics of Solids, High Magnetic Field Laboratory, Helmholtz Zentrum Dresden Rossendorf

  • Audrey Grockowiak

    National High Magnetic Field Laboratory, Tallahassee, Florida 32310, Florida State University, Tallahassee, National High Magnetic Field Laboratory

  • Fedor Balakirev

    Los Alamos National Laboratory, Los Alamos National Labs, Los Alamos, National High Magnetic Field Laboratory, National High Magnetic Field Lab, Los Alamos National Laboratory, Los Alamos, USA, National High Magnetic Field Laboratory

  • John Singleton

    National High Magnetic Field Laboratory, Los Alamos National Laboratory, MPA-MAG, Los Alamos National Laboratory, National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, NM 87545, Los Alamos National Laboratory, NHMFL, Los Alamos National Labs, NHMFL, Los Alamos National Laboratory, Los Alamos, National High Magnetic Field Laboratory, NHMFL, Los Alamos Natl Lab, Los Alamos Natl Lab

  • Kent Shirer

    Max Planck Institute for Chemical Physics of Solids, Max Planck Institute for Chemical Physics of Solids, Dresden, Germany

  • Markus Koenig

    Max-Planck-Institute for Chemical Physics of Solids, Max Planck Institute for Chemical Physics of Solids, Max Planck Institute for Chemical Physics of Solids, Dresden, Germany

  • Eric Bauer

    Los Alamos National Laboratory, Los Alamos, NM 87545, USA, Los Alamos National Laboratory, MPA-CMMS, Los Alamos National Laboratory, Los Alamos, USA, MPA-CMMS, Los Alamos National Laboratory, Los Alamos National Laboratory, Los Alamos, New Mexico, USA, Los Alamos National Labs

  • Filip Ronning

    Los Alamos National Laboratory, Los Alamos, NM 87545, USA, Los Alamos National Laboratory, MPA-CMMS, Los Alamos National Laboratory, Los Alamos, USA, MPA-CMMS, Los Alamos National Laboratory, Los Alamos National Laboratory, Los Alamos, New Mexico, USA, Los Alamos National Labs

  • Stanley W Tozer

    National High Magnetic Field Laboratory, Tallahassee, Florida 32310, Florida State University, Tallahassee, National High Magnetic Field Laboratory

  • Philip Moll

    Ecole polytechnique federale de Lausanne, Swiss Federal Institute of Technology in Lausanne, École Polytechnique Fédérale de Lausanne (EPFL), Institute of Materials, Lausanne, Switzerland, Institute of Materials, Ecole Polytechnique Federale de Lausanne, Ecole Polytechnique Federale de Lausanne