Sign reversing Hall effect in atomically thin high temperature superconductors

ORAL

Abstract

We fabricate van der Waals heterostructure devices using few unit cell thick Bi2Sr2CaCu2O8+δ for magnetotransport measurements. The superconducting transition temperature and carrier density in atomically thin samples can be maintained to close to that of the bulk samples. As in the bulk sample, the sign of the Hall conductivity is found to be opposite to the normal state near the transition temperature but with a drastic enlargement of the region of Hall sign reversal in the temperature-magnetic field phase diagram as the thickness of samples decreases. Quantitative analysis of the Hall sign reversal based on the excess charge density in the vortex core and superconducting fluctuations suggests a renormalized superconducting gap in atomically thin samples at the two-dimensional limit. Preprint available at arXiv:1809.06944 .

Presenters

  • Shu Yang Frank Zhao

    Harvard University

Authors

  • Shu Yang Frank Zhao

    Harvard University

  • Nicola Poccia

    Department of Physics, Harvard University, Cambridge, MA 02138, USA., Harvard University

  • Margaret G. Panetta

    Harvard University

  • Cyndia Yu

    Stanford University, Harvard University

  • Jedediah W. Johnson

    Harvard University

  • Hyobin Yoo

    Department of Physics, Harvard University, Cambridge, MA 02138, USA., Harvard University

  • Ruidan Zhong

    Brookhaven National Lab, Department of Chemistry, Princeton University, Department of Condensed Matter Physics and Materials Science, Brookhaven, Brookhaven National Laboratory, Upton, New York 11973-5000, USA., Brookhaven National Laboratory, Condensed Matter Physics & Materials Science, Brookhaven National Laboratory, Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Brookhaven National Laboratories

  • Genda Gu

    Brookhaven National Laboratory, Brookhaven National Lab, Department of Condensed Matter Physics and Materials Science, Brookhaven, Brookhaven National Laboratory, Upton, New York 11973-5000, USA., Cond. Matt. Physics and Material Science, Brookhaven Natl Lab, Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Condensed Matter Physics & Materials Science Department, Brookhaven National Laboratory, Brookhaven National Labs, Long Island, NY, USA, 11973, Condensed Matter Physics & Materials Science, Brookhaven National Laboratory, Condensed Matter Physics, Brookhaven National Laboratory, Brookhaven National Laboratories, Chinese Academy of Sciences, Condensed Matter Physics & Materials Science, Brookhaven National Lab, Brookhaven Natl Lab

  • Kenji Watanabe

    National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305 0044, Japan, Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan, National Institute for Materials Science, Advanced Materials Laboratory, National Institute for Materials Science, , 1-1 Namiki, Tsukuba 305-0044, Japan, National Institute for Material Science, 1-1 Namiki, Tsukuba 305-0044, National Institute of Materials Science, NIMS, Japan, Advanced Materials Laboratory, NIMS, National Institute for Materials Science, Tsukuba, Japan, National Institute for Materials Science, Japan, Advanced Materials Laboratory, National Institute for Materials Science, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0044, Japan, National Institute for Materials Science (NIMS), NIMS Tsukuba, National Institute for Materials Science (Japan), NIMS, National Institute for Material Science, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Japan, National Institute for Materials Science , Japan, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan., Advanced Materials Laboratory, National Institute for Materials Science, Japan, Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan, National Institute for Materials Science, Tsukuba, Ibaraki 305- 0044, Japan, National Institute for Material Science - Japan, National Institute for Materials Science, Namiki Tsukuba Ibaraki, Japan, National Institute of Material Science, Advanced Material Lab, NIMS, Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba, Japan, Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba, Ibaraki, Japan, National Institute for Materials Science, Tsukuba, 1-1 Namiki, Tsukuba, National Institute for Materials Science, NIMS/Tsukuba, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044 Japan, National Institute for Materials Science, Namiki, 305-0044, Japan, National Institute for Material Science, Japan, Advanced Materials Laboratory, NIMS, Japan, Columbia University, Advanced Materials Labaratory, National Institute for Materials Science, National Institute of Material Science, 1-1 Namiki, Tsukuba, Ibaraki 205-0044, Japan, National Institute of Materials Science, Japan

  • Takashi Taniguchi

    National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305 0044, Japan, National Institute for Materials Science, Advanced Materials Laboratory, National Institute for Materials Science, , 1-1 Namiki, Tsukuba 305-0044, Japan, National Institute for Material Science, 1-1 Namiki, Tsukuba 305-0044, National Institute of Materials Science, NIMS, Japan, Advanced Materials Laboratory, NIMS, National Institute for Materials Science, Tsukuba, Japan, Advanced Materials Laboratory, National Institute for Materials Science, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0044, Japan, National Institute for Materials Science (NIMS), NIMS Tsukuba, NIMS, National Institute for Material Science, National Institute for Materials Science, Japan, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Japan, National Institute for Materials Science , Japan, Advanced Materials Laboratory, National Institute for Materials Science, Japan, Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan, National Institute for Materials Science, Tsukuba, Ibaraki 305- 0044, Japan, National Institute for Material Science - Japan, National Institute for Materials Science, Namiki Tsukuba Ibaraki, Japan, National Institute of Material Science, Advanced Material Lab, NIMS, Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba, Japan, Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba, Ibaraki, Japan, National Institute for Materials Science, Tsukuba, 1-1 Namiki, Tsukuba, National Institute for Materials Science, NIMS/Tsukuba, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044 Japan, National Institute for Materials Science, Namiki, 305-0044, Japan, National Institute for Material Science, Japan, Advanced Materials Laboratory, NIMS, Japan, Advanced Materials Labaratory, National Institute for Materials Science, National Institute of Material Science, 1-1 Namiki, Tsukuba, Ibaraki 205-0044, Japan, National Institute of Materials Science, Japan

  • Svetlana Postolova

    Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia., Institute for Physics of Microstructures

  • Valerii Vinokur

    Materials Science Division, Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439, USA., Argonne National Laboratory

  • Philip Kim

    Harvard University, Department of Physics, Harvard University & School of Engineering and Applied Sciences, Harvard University, Department of Physics, Harvard University, Cambridge, MA 02138, USA., Physics, Harvard University, Physics and Applied Physics, Harvard University, Physics department, Harvard University