Nonequilibrium Mass Transport in the 1D Fermi-Hubbard Model

ORAL

Abstract

We report on the results of a combined experimental and numerical study of nonequilibrium dynamics of ultracold fermions in a 1d lattice induced by quenching the trapping potential to zero [1]. This leads to an expansion of the cloud in a homogeneous lattice under the influence of interactions. For initial states with a significant admixture of doublons in a sea of singlons, we observe a dynamical demixing of fast expanding singlons from doublons that remain in the center of the system. We interpret this as evidence for fermionic quantum distillation [2]. For initial product states of one fermion per site and random spin orientations, we study the asymptotic expansion velocity. Compared to bosons [3], these velocities depend only very weakly on the interaction strength. We explain this observation by the fact that the Pauli principle significantly limits the amount of interaction energy that can be generated for fermions as compared to bosons.

[1] S. Scherg et al., PRL 121, 130402 (2018)
[2] F. Heidrich-Meisner et al., PRA 80, 041603 (2009)
[3] J. P. Ronzheimer et al., PRL 110, 205301 (2013)

Presenters

  • Jan Stolpp

    Institute for Theoretical Physics, Universität Göttingen

Authors

  • Jan Stolpp

    Institute for Theoretical Physics, Universität Göttingen

  • Sebastian Scherg

    Fakultät für Physik, Universität München

  • Thomas Kohlert

    Fakultät für Physik, Universität München

  • Jacek Herbrych

    Department of Physics and Astronomy, The University of Tennessee, Department of Physics and Astronomy, University of Tennessee, University of Tennessee

  • Pranjal Bordia

    Fakultät für Physik, Universität München

  • Ulrich Schneider

    Cavendish Laboratory, University of Cambridge, Cambridge University

  • Fabian Heidrich-Meisner

    Institute for Theoretical Physics, Georg-August-Universität Göttingen, Institute for Theoretical Physics, Universität Göttingen

  • Immanuel Felix Bloch

    Fakultät für Physik, Universität München

  • Monika Aidelsburger

    Fakultät für Physik, Ludwig-Maximilians-Universität München, Fakultät für Physik, Universität München