Robust micro-magnet geometries for Majorana modes in low g-factor materials

ORAL

Abstract

Signatures of Majorana bound states (MBS) have been widely reported in semiconductor materials with large spin-orbit coupling and proximity-induced superconductivity [1]. In principle, MBS can also emerge in weakly spin-orbit coupled materials subjected to inhomogeneous magnetic fields [2]. However, in practice small g-factors make it difficult to reach the topological phase. In this work, we explore a versatile approach where spin-orbit coupling arises from a non-uniform magnetic field produced by a micro-magnet array [3]. Using the recently developed RGF-GRAPE algorithm [4], we optimize realistic micro-magnet geometries to find suitable conditions for the emergence of MBS in a one-dimensional wire without intrinsic spin-orbit coupling. In addition, we study robustness of MBS against possible micro-magnet nanofabrication errors. Finally, we identify suitable low g-factor materials commonly used in the microelectronic industry as promising candidates for experimental implementations.

[1] Lutchyn et al. Nat. Rev. Mater. 3, 52-68 (2018).
[2] Choy et al. Phys. Rev. B 84, 195442 (2011).
[3] Kjaergaard et al. Phys. Rev. B 85, 020503(R) (2012).
[4] Boutin et al. ArXiv :1804.03170 (2018).

Presenters

  • Sara Turcotte

    Institut quantique, Université de Sherbrooke

Authors

  • Sara Turcotte

    Institut quantique, Université de Sherbrooke

  • Samuel Boutin

    Institut quantique, Université de Sherbrooke, Institut quantique and Département de Physique, Université de Sherbrooke

  • Julien Camirand Lemyre

    Institut quantique and Département de Physique, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada, Institut quantique, Universite de Sherbrooke, Institut quantique, Université de Sherbrooke

  • Ion Garate

    Universite de Sherbrooke, Institut quantique, Université de Sherbrooke, Institut quantique and Département de Physique, Université de Sherbrooke

  • Michel Pioro-Ladriere

    Institut quantique and Département de physique, Université de Sherbrooke, Institut quantique and Département de Physique, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada, Institut quantique and Département de Physique, Université de Sherbrooke, Institut quantique, Universite de Sherbrooke & Canadian Institute for Advanced Research, Universite de Sherbrooke, Institut quantique, Université de Sherbrooke and Canadian Institute for Advanced Research