Highly coherent spin states in carbon nanotubes coupled to cavity photons

ORAL

Abstract

Circuit quantum electrodynamics allows one to probe, manipulate and couple superconducting quantum bits using cavity photons at an exquisite level. Mesoscopic-QED inherits the c-QED toolbox and applies it to quantum dot circuits. In this talk, I will present a spin-qubit encoded in a carbon nanotube based double quantum dot with non-collinear ferromagnetic contacts. Using the c-QED spin-photon interface, we drove a single electronic spin and performed microwave spectroscopy of it. From this measurement we identified a decay rate which can be tuned to be as low as 250kHz. The cooperativity of the spin-photon interface is also measured as a function of the detuning, allowing to identify an optimal working point. These coherence properties, which are attributed to the use of pristine carbon nanotubes stapled inside the cavity, should enable coherent spin-spin interaction via cavity photons and compare favorably to the ones recently demonstrated in Si-based circuit QED experiments.

Presenters

  • Tino Cubaynes

    Laboratoire Pierre Aigrain UMR 8551, Ecole normale Supérieure - PSL Research university, CNRS, Université Pierre et Marie Curie - Sorbonne Universités, Université Paris Dider

Authors

  • Tino Cubaynes

    Laboratoire Pierre Aigrain UMR 8551, Ecole normale Supérieure - PSL Research university, CNRS, Université Pierre et Marie Curie - Sorbonne Universités, Université Paris Dider

  • Matthieu Delbecq

    Laboratoire Pierre Aigrain UMR 8551, Ecole normale Supérieure - PSL Research university, CNRS, Université Pierre et Marie Curie - Sorbonne Universités, Université Paris Dider

  • Matthieu Dartiailh

    Physics, New York University, Center for Quantum Phenomena, Department of Physics, New York University, Laboratoire Pierre Aigrain UMR 8551, Ecole normale Supérieure - PSL Research university, CNRS, Université Pierre et Marie Curie - Sorbonne Universités, Université Paris Dider

  • Réouven Assouly

    Laboratoire Pierre Aigrain UMR 8551, Ecole normale Supérieure - PSL Research university, CNRS, Université Pierre et Marie Curie - Sorbonne Universités, Université Paris Dider

  • Matthieu M Desjardins

    Laboratoire Pierre Aigrain UMR 8551, Ecole normale Supérieure - PSL Research university, CNRS, Université Pierre et Marie Curie - Sorbonne Universités, Université Paris Dider

  • Lauriane Contamin

    Laboratoire Pierre Aigrain UMR 8551, Ecole normale Supérieure - PSL Research university, CNRS, Université Pierre et Marie Curie - Sorbonne Universités, Université Paris Dider

  • Laure Bruhat

    Microtechnology and Nanoscience, MC2, Chalmers University of Technology, Microtechnology and nanoscience, Chalmers University of Technology

  • Zaki Leghtas

    Centre Automatique et Systèmes, Mines ParisTech, centre automatique et systèmes, Mines Paristech, Centre Automatique et Systmes, Mines-ParisTech, PSL Research University, 75006 Paris, France, Mines ParisTech / ENS Paris, Laboratoire Pierre Aigrain UMR 8551, Ecole normale Supérieure - PSL Research university, CNRS, Université Pierre et Marie Curie - Sorbonne Universités, Université Paris Dider, Centre Automatique et Systèmes, Mines-ParisTech and Laboratoire Pierre Aigrain, Ecole Normale Supérieure, Paris, France

  • Francois Mallet

    Laboratoire Pierre Aigrain UMR 8551, Ecole normale Supérieure - PSL Research university, CNRS, Université Pierre et Marie Curie - Sorbonne Universités, Université Paris Dider

  • Audrey Cottet

    Laboratoire Pierre Aigrain UMR 8551, Ecole normale Supérieure - PSL Research university, CNRS, Université Pierre et Marie Curie - Sorbonne Universités, Université Paris Dider

  • Takis Kontos

    Laboratoire Pierre Aigrain UMR 8551, Ecole normale Supérieure - PSL Research university, CNRS, Université Pierre et Marie Curie - Sorbonne Universités, Université Paris Dider