Looping and Clustering: a statistical physics approach to protein-DNA complexes in bacteria

ORAL

Abstract

The DNA shows a high degree of spatial and dynamical organization over a broad range of length scales. It interacts with different populations of proteins and can form protein-DNA complexes that underlie various biological processes, including chromosome segregation. A prominent example is the large ParB-DNA complex, an essential component of a widely spread mechanism for DNA segregation in bacteria. Recent studies suggest that DNA-bound ParB proteins interact with each other and condense into large clusters with multiple extruding DNA-loops.

In my talk, I present the Looping and Clustering model [1], a simple statistical physics approach to describe how proteins assemble into a protein-DNA cluster with multiple loops. Our analytic model predicts binding profiles of ParB proteins in good agreement with data from high precision ChIP-sequencing – a biochemical technique to analyze the interaction between DNA and proteins at the level of the genome. The Looping and Clustering framework provides a quantitative tool that could be exploited to interpret further experimental results of ParB-like protein complexes and gain some new insights into the organization of DNA.

[1] Walter, J.-C., Walliser, N.-O., ... & Broedersz, C. P., New J. Phys. 20, 035002 (2018).

Presenters

  • Nils-Ole Walliser

    Laboratoire Charles Coulomb (L2C), CNRS, Univ. Montpellier, Montpellier, France, Laboratoire Charles Coulomb (L2C), Université de Montpellier (France)

Authors

  • Jean-Charles Walter

    Laboratoire Charles Coulomb (L2C), CNRS, Univ. Montpellier, Montpellier, France, Université de Montpellier, Laboratoire Charles Coulomb (L2C), Université de Montpellier (France), CNRS

  • Nils-Ole Walliser

    Laboratoire Charles Coulomb (L2C), CNRS, Univ. Montpellier, Montpellier, France, Laboratoire Charles Coulomb (L2C), Université de Montpellier (France)

  • Gabriel David

    Laboratoire Charles Coulomb (L2C), CNRS, Univ. Montpellier, Montpellier, France, Laboratoire Charles Coulomb (L2C), Université de Montpellier (France)

  • Jérôme Dorignac

    Laboratoire Charles Coulomb (L2C), CNRS, Univ. Montpellier, Montpellier, France, Laboratoire Charles Coulomb (L2C), Université de Montpellier (France), Université de Montpellier

  • Frédéric Geniet

    Laboratoire Charles Coulomb (L2C), CNRS, Univ. Montpellier, Montpellier, France, Laboratoire Charles Coulomb (L2C), Université de Montpellier (France), Université de Montpellier

  • John Palmeri

    Laboratoire Charles Coulomb (L2C), CNRS, Univ. Montpellier, Montpellier, France, Laboratoire Charles Coulomb (L2C), Université de Montpellier (France), CNRS

  • Andrea Parmeggiani

    Laboratoire Charles Coulomb (L2C), CNRS, Univ. Montpellier, Montpellier, France, Laboratoire Charles Coulomb (L2C), Université de Montpellier (France), Université de Montpellier

  • Ned Wingreen

    Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton University, Department of Molecular Biology, Princeton University, Department of Molecular Biology and Lewis-Sigler Institute for Integrative Genomics, Princeton University

  • Chase Broedersz

    Ludwig Maximilian University of Munich, Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München, Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians University of Munich, Arnold -Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Arnold Sommerfeld Center for Theoretical Physics and Center for Nanoscience, Ludwig-Maximilian-Universität München, D-80333 München, Germany, Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universitaet Muenchen (Germany), Physics, LMU Munich