Magnetic and superconducting correlation in monolayer and twisted-bilayer graphene

ORAL

Abstract

Using exact quantum Monte Carlo method, we identify the phase diagram of the half filled, the lightly doped and heavily doped graphene, which shows a rather rich physical properties. At half filling, the system is driven to a Mott insulator with antiferromagnetic long range order by increasing interaction, and a transition from a d+id pairing to a p+ip pairing is revealed, depends on the next-nearest hoping and the electronic fillings. We also examine the recent novel electronic states seen in magic-angle graphene superlattices. From the Hubbard model on a double-layer honeycomb lattice with a rotation angle θ=1.08, we reveal that an antiferromagnetically ordered Mott insulator emerges beyond a critical U c at half filling, and with a small doping, the pairing with d+id symmetry dominates over other pairings at low temperature. The effective d+id pairing interaction strongly increase as the on-site Coulomb interaction increases, indicating that the superconductivity is driven by electron-electron correlation. Our non-biased numerical results demonstrate that the twisted bilayer graphene is a new and idea platform for further investigating the strongly correlated phenomena.

Presenters

  • Tianxing Ma

    Beijing Normal University

Authors

  • Tianxing Ma

    Beijing Normal University

  • Tongyun Huang

    Beijing Normal University

  • Lufeng Zhang

    Beijing Normal University