Similarities and Differences Between the Nickelate LaNiO2 and Isoelectronic Cuprate Superconductors

ORAL

Abstract

It is an open question whether layered nickelate compounds and derived heterostructures could mimic a set of distinct properties which are suspected to invoke high-temperature superconductivity in cuprates, that is, a 2D layered crystal structure, spin 1/2 and strong antiferromagnetic correlations in the parent compound, absence of orbital degeneracy, and hybridization with oxygen ligands. To address this issue, we have investigated LaNiO2 and isostructural SrCuO2 thin films by x-ray absorption spectroscopy (XAS) and resonant inelastic x-ray scattering (RIXS) at the O K -and Ni L-edges. Despite several formal similarities between the nickelate and the cuprate, our study unveils severe differences in orbital configuration, antiferromagnetic order, and ligand-hybridization.

Presenters

  • Matthias Hepting

    SLAC National Accelerator Laboratory, SIMES, SLAC National Accelerator Lab, Max Planck Institute Stuttgart

Authors

  • Matthias Hepting

    SLAC National Accelerator Laboratory, SIMES, SLAC National Accelerator Lab, Max Planck Institute Stuttgart

  • Danfeng Li

    SIMES, SLAC National Accelerator Lab

  • Haiyu Lu

    SIMES, SLAC National Accelerator Lab, SLAC National Accelerator Laboratory

  • Chunjing Jia

    Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, SIMES, SLAC National Accelerator Lab, SSRL Materials Science Division, SLAC National Accelerator Laboratory and Stanford University, Stanford University

  • Xiao Feng

    SIMES, SLAC National Accelerator Lab

  • Yasuyuki Hikita

    Stanford Institute for Material and Energy Sciences, SLAC National Accelerator Laboratory, SIMES, SLAC National Accelerator Lab, Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory

  • Brian Moritz

    SIMES, SLAC National Accelerator Lab

  • Eugenio Paris

    Paul Scherrer Institut, Research Department Synchrotron Radiation and Nanotechnology, Paul Scherrer Institute, Swiss Light Source, Paul Scherrer Institut

  • Yi Tseng

    Paul Scherrer Institut, Swiss Light Source, Paul Scherrer Institut

  • Zahid Hussain

    Advanced Light Source, Lawrence Berkeley National Laboratory, Advanced Light Source, Lawrence Berkeley Laboratory, Lawrence Berkeley National Laboratory, Lawrence Berkeley National Lab, Berkeley, USA

  • Yi-De Chuang

    Advanced Light Source, Lawrence Berkeley National Laboratory, Natron Energy

  • Zhixun Shen

    Stanford University, SLAC National Accelerator Laboratory, SIMES, SLAC National Accelerator Lab, GLAM, Stanford University, Applied physics, Stanford University, Department of Applied Physics, Stanford University

  • Schmitt Thorsten

    Paul Scherrer Institut, Research Department Synchrotron Radiation and Nanotechnology, Paul Scherrer Institute, Paul Scherrer Institute, Swiss Light Source, Paul Scherrer Institut

  • Thomas Devereaux

    Stanford University, Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, SLAC National Accelerator Laboratory, Physics, Stanford University, SLAC and Stanford University, Institute for Materials and Energy Science, Stanford, SIMES, SLAC National Accelerator Lab, SLAC National Accelerator Laboratory and Stanford University, Stanford Institute for Materials and Energy Sciences, SLAC, Stanford, SIMES, SLAC, and Stanford University, Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University

  • Harold Hwang

    Applied Physics, Stanford University, SIMES, SLAC National Accelerator Lab, Geballe Laboratory for Advanced Materials, Department of Applied Physics, Stanford University

  • Wei-Sheng Lee

    SLAC National Accelerator Laboratory, SIMES, SLAC National Accelerator Lab